
6ELEN018W - Tutorial 9 Exercises

Exercise 1

Consider the gridworld problem shown in Figure 1. An agent needs to move to the target goal
position G starting from any cell (arbitrary position) by following the optimum policy which
gathers the largest reward.

The immediate rewards r(s, a) for the transition from one state to another for this problem
are also shown in Figure 1. For example, the reward received by moving from state s1 to s2 by
taking the right action is 0. The reward for moving from state s5 to state G (i.e. taking the
north action) is 100.
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Figure 1: r(s, a) (immediate reward) values.

Implement in a programming language of your choice (Python or Java) theQ-learning applied
to the problem of the previous Figure, until the Q values converge and they do not change any
more.

Hint: You need to consider multiple episodes, i.e. after the terminal (final, goal state) is
reached, a new episode is started. The initial values of the Q values for the new episode will be
the ones that the previous episode had calculated.

Check your derived Q values with the Figure 2 in the lecture slide 21.

Do not look at the solution provided until you spend sufficient time working out
your own solution.
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Solution

The following sample solution code can be also found as a Python notebook format in:

https://dracopd.users.ecs.westminster.ac.uk/DOCUM/courses/6elen018w/gridworld.

ipynb

import random

#***************************************************************

#************ author: Dimitris C. Dracopoulos ******************

#***************************************************************

# delta (see lecture slides formulas) is a dictionary containing

# the states of the dynamic system and mapping them to a dictionary

# {a: s'} where s' is the new state that we arrive when we apply

# action a when in state s

# We assume that states, s_1, s_2 to s_6 are assigned by row traversing:

# ------------

# |s1 |s2 |s3|

# |s4 |s5 |s6|

# ------------

delta = {}

Q = {}

# 'N' is go North action

# 'E' is go East action

# 'S' is go South action

# 'W' is go West action

delta['s1'] = {'N':'s1', 'E':'s2', 'S':'s4', 'W':'s1'}

delta['s2'] = {'N':'s2', 'E':'s3', 'S':'s5', 'W':'s1'}

delta['s3'] = {'N':'s3', 'E':'s3', 'S':'s6', 'W':'s2'}

delta['s4'] = {'N':'s1', 'E':'s5', 'S':'s4', 'W':'s4' }

delta['s5'] = {'N':'s2', 'E':'s6', 'S':'s5', 'W':'s4'}

delta['s6'] = {'N':'s3', 'E':'s6', 'S':'s6', 'W':'s5'}

# all rewards are zero, except those leading to state s3

# initialise all Q with 0

Q['s1'] = {'N':0, 'E':0, 'S':0, 'W':0}

Q['s2'] = {'N':0, 'E':0, 'S':0, 'W':0}
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Q['s3'] = {'N':0, 'E':0, 'S':0, 'W':0}

Q['s4'] = {'N':0, 'E':0, 'S':0, 'W':0}

Q['s5'] = {'N':0, 'E':0, 'S':0, 'W':0}

Q['s6'] = {'N':0, 'E':0, 'S':0, 'W':0}

# action 1 is North

# action 2 is East

# action 3 is South

# action 4 is West

def num2Action(action):

if action == 1:

a = 'N'

elif action == 2:

a = 'E'

elif action == 3:

a = 'S'

else:

a = 'W'

return a

# find and return the action which will lead to the

# maximum Q, given the current state s

def findMaxAction(s):

max_so_far = Q[s]['N']

max_action = 'N'

if Q[s]['E'] > max_so_far:

max_so_far = Q[s]['E']

max_action = 'E'

if Q[s]['S'] > max_so_far:

max_so_far = Q[s]['S']

max_action = 'S'

if Q[s]['W'] > max_so_far:

max_so_far = Q[s]['W']

max_action = 'W'

return max_action

# display Q values

def displayQ():

print('s1: -> ', Q['s1'])

print('s2: -> ', Q['s2'])

print('s3: -> ', Q['s3'])
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print('s4: -> ', Q['s4'])

print('s5: -> ', Q['s5'])

print('s6: -> ', Q['s6'])

# apply Q-learning

def Q_learning():

gamma = 0.9

# Run many episodes

for e in range(10000):

# Run 1 episode of the problem (i.e. until state 'G' is reached)

# Start with from random state s

s = random.randint(1, 6)

s = 's' + str(s) # current state

while s != 's3':

# 1. Select an action and execute it

a = random.randint(1, 4)

a = num2Action(a)

# 3. Observe the new state s'

s_new = delta[s][a]

if __debug__:

print(s, '(', a, ')', '->', s_new)

# 3. Receive immediate reward r

# if next state is the goal state G then the reward is 100,

# otherwise it is 0

if s_new == 's3':

r = 100

else:

r = 0

# 4. Update the table entry for \hat {Q}(s,a) as follows:

#\Qhat (s,a) -> r + gamma*max_{a'}[Qhat(s',a')]

# where s' is the next state after applying action a in state s

if s_new != s:

a_next = findMaxAction(s_new)

Q[s][a] = r + gamma*Q[s_new][a_next]

# 5. s <- s'

# The new state becomes the next current state

s = s_new

displayQ()
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# the starting point of program execution

def main():

Q_learning()

if __name__ == "__main__":

main()

Exercise 2

Consider the grid in Figure 2. An agent can move in either of the four directions starting from
S and finishing in the goal state G.
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Figure 2: The grid world example for the application of reinforcement learning techniques.

1. If the reward on reaching the goal is 100, and all other rewards between state transitions
are 0, write a program in a programming language of your choice (e.g. Java, Python,
C++) which uses Q learning to learn the optimal policy. Assume that γ = 0.9.

2. What are the actions of the optimal policy?
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Solution

This should be based on the previous Exercise code, the only changes is in the initialisation of
the dictionaries for the different states. The number of states is larger here, but the Q-learning
code is the same.

Exercise 3

Consider the previous exercise: how does the optimal policy change if another goal state is added
to the lower right corner with reward -100.

Hint: To see this, rerun your implementation with the additional goal.

Solution

Just a modification of the calculation of the reward.
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