6ELENO18W - Applied Robotics
Lecture 8: Robot Control - Intelligent Control
Algorithms

Dr Dimitris C. Dracopoulos

What is Control and Why it is Needed

» A robot needs to move its joints to achieve tasks
» A mobile robot moves to different locations

The movement of a robot (joints) is done using actuators.

In general, everything can be considered as control:
» Decisions we make affect (control) our future
» Decision while driving affect (control) the next position and
the final location
» Control theory is a big area used not only in engineering and
robotics, but in computer science

» Can be seen as what is the best next action to take (given a
specific state) so as to achieve (optimise) specific objectives!

Linear vs Nonlinear Systems

Linear System Nonlinear System
Output Output
O
(o}
o
'Input 'Input

» In real life all systems are nonlinear, however many of them
can be linearised about their operation point.

Linear systems are easier to analyse and prove mathematically their
behaviour and properties.

Classical (Traditional) Robot Control

» Manipulators and fixed robots are very good in their
operation!

P> Kinematics, inverse kinematics and dynamics are well
understood for fixed mechanics and robots working in the
same environment.

» Their actuators are very well controlled.

» Linearity assumptions (or operation near points where their
dynamics is linearised) makes it possible to analyse their
behaviour and stability.

BUT

Complex Systems

Real Life systems are complex.

» Robots which do complex work are non-linear (and their
behaviour/response cannot be linearised). Impossible to
control using classical methods.

» Robots need to be adaptive and be able to cope with
unknown environments and unseen situations similarly to how
humans do.

» Robots have to be adaptive knowing what that they are going
to do if encountering a partially unknown environment, a
completely unknown environment or unknown difficulties.

» We send robots to space.

» Reconfigurable Robots

» What happens if damage happens in one of the actuators with
the robot or one of their thumbs might hit an obstacle and it
might lose part of it?

= A new challenge: Intelligent Control based on intelligent
algorithms.

Robot Driving a Car - Autonomous Driving
ALVINN [Pomerleau 1989] drives 70 mph on highways

30 Output
Units

30x32 Sensor
Input Retina

https://www.youtube.com/watch?v=IaoIqVMd6tc&t=71s

https://www.youtube.com/watch?v=IaoIqVMd6tc&t=71s

Perceptron

O

n
Lif 2w, x:>0
i=0 U1
-1 otherwise

1 ifwyg+wixy+---+ wpx, >0
—1 otherwise.

o(xl,...,x,,):{

A simpler vector notation can be used:

o(%) = 1 ifw-Xx>0
1 —1 otherwise.

Perceptron (cont'd)

X Xy A

(a) (b)

Represents some useful functions
» What weights represent g(x1, x2) = AND(x1,x2)?

But some functions are not representable with a single layer of
neurons.

» e.g., not linearly separable (such as the XOR function)

Perceptron training rule

wi < w; + Aw;
where
Aw; = n(t — o)x;

Where:

» t = c(X) is target value

» o is perceptron output

» 1 is small constant (e.g., .1) called learning rate
Can prove it will converge:

» If training data is linearly separable

» and 7 sufficiently small

Gradient Descent

To understand, consider simpler linear unit, where

O =Wy + wixg + -+ WpX,
Let's learn w;'s that minimise the squared error

E[w] = % S (ts — 04)?

deD

where D is set of training examples

Gradient Descent (cont'd)

.

%
ety
uesiigeties
V1NN RS g (s
NNy RCET S X
s

N SOESISSSESS
S OSSSSSSSSSS
S SS

~o

wo

Gradient

. O0E OE OE
VE[W] = owg’ Owy’ 0w,

Training rule:
Aw = —nVE[W]

ie., oF
Aw; = —ne—
W n@w,'

Calculating the Derivative

OE 01
ow; - ow; 2 Z(td B Od)2
1 1 d
1 0
) Z 8W-(td B Od)2
d 1

= *Z d_od)i tq — od)

) Lo
= ;(td—od)awi(td—w~xd)

gvi = > (ta — 04)(—xi.q)

d

Application of Gradient Descent

Each training example is a pair of the form (X, t), where
X is the vector of input values, and t is the target output
value. 7 is the learning rate (e.g., .05).

» Initialise each w; to some small random value
» Until the termination condition is met, Do

» |nitialise each Aw; to zero.

» For each (X, t) in training_examples, Do
» Input the instance X to the unit and compute the output o
» For each linear unit weight w;, Do

Aw; «— Aw; +n(t — 0)x;
» For each linear unit weight w;, Do

wi <— w; + Aw;

Multilayer Perceptrons with Hidden Layers and Sigmoid
Units

To overcome the limitations of the single layer Perceptron (linear
separability):

L
o 500 1660 1460

Sigmoid Unit

O

0 = O(net) = v
e

o(x) is the sigmoid function

1
1+ e

Nice property: 22() — 5(x)(1 — o(x))
We can derive gradient descent rules to train:
» One sigmoid unit
» Multilayer networks of sigmoid units — Backpropagation

Backpropagation Algorithm
Initialise all weights to small random numbers.
Until satisfied, Do:
» For each training example, Do

1. Input the training example to the network and compute the
network outputs
2. For each output unit k

Ok +— Ok(]. — Ok)(tk — Ok)
3. For each hidden unit h

(Sh — Oh(l — Oh) Z Wk,hék

k€Eoutputs

4. Update each network weight w; ;
Wij <= wij+ Aw;j

where
Aw;j = ndjx;

More on Backpropagation

v

Gradient descent over entire network weight vector

v

Will find a local, not necessarily global error minimum
» In practice, often works well (can run multiple times)

» Often include weight momentum «
AW,"J'(n) = 775J'X,' + OzAW,"j(n — 1)

» Minimises error over training examples
» Will it generalise well to subsequent examples?
» Training can take thousands of iterations — slow!

» Using network after training is very fast

Convergence of Backpropagation

Gradient descent to some local minimum
» Perhaps not global minimum...
> Add momentum
» Stochastic gradient descent

» Train multiple nets with different initial weights

Expressive Capabilities of ANNs

Boolean functions:

» Every boolean function can be represented by network with
single hidden layer

» but might require exponential (in number of inputs) hidden
units
Continuous functions:
» Every bounded continuous function can be approximated with

arbitrarily small error, by network with one hidden layer
[Cybenko 1989; Hornik et al. 1989]

» Any function can be approximated to arbitrary accuracy by a
network with two hidden layers [Cybenko 1988].

How to Avoid Overfitting and Improve Generalisation

Split the data into 3 sets, training, testing and validation and stop
the training according to the following diagram.

|<—— Training error

Loptimum training time

Tips for Using Backpropagation

» When a sigmoid is used in the output layer, use 0.9 and 0.1
instead of 1 and 0 as the targets, to avoid the saturated parts
of the sigmoid function.

» Experiment with different learning rates and number of hidden
nodes and layers. Do not use more than 3 hidden layers.

P> Preprocess your data by scaling them in the same range. If
some features (columns) are not relevant you can discard
them completely.

Using the sklearn Python module

To install:
» On your own computer (ideally in a virtual environment but
this is not compulsory):
pip install -U scikit-learn
» In the university labs the sklearn module is already installed
inside Anaconda. Start the Jupyter lab application from inside
Anaconda and start using it.

An Example Using sklearn - The Diabetes Dataset

A well-known dataset is the diabetes dataset, used to create a
neural network which can predict whether someone has diabetes.

> 442 diabetes patients

» Input variables (features): age, sex, body mass index, average
blood pressure, and six blood serum measurements.

» Output variable: A quantitative measure of disease
progression one year after baseline.

Source URL:
https://wwwi.stat.ncsu.edu/ "boos/var.select/diabetes.html

https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html

An Example Using sklearn - The Diabetes Dataset
(cont'd)

from sklearn.neural_network import MLPRegressor

from sklearn import datasets
from sklearn.model_selection import train_test_split

import matplotlib.pylab as plt
import numpy as np

from sklearn.metrics import mean_squared_error

load all the data from the dataset
diabetes = datasets.load_diabetes()

print (diabetes.DESCR)

check the matriz shape (number of features and data for the inputs)
print(diabetes.data.shape)

check the shape (number of data for targets)
print(diabetes.target.shape)

feature (column) names
print(diabetes.feature_names)

X
y

diabetes.data
diabetes.target

An Example Using sklearn - The Diabetes Dataset
(cont'd)

Create training/ test data split
X_train, X_test, y_train, \
y_test = train_test_split(X, y, test_size=0.2, random_state=1)

Instantiate MLPRegressor

nn = MLPRegressor (
activation='relu',
hidden_layer_sizes=(10, 10),
alpha=0.001,
max_iter = 10000,
random_state=20,
early_stopping=False

Train the model
nn.fit(X_train, y_train)

Make prediction
pred = nn.predict(X_test)

Calculate accuracy and error metrics
test_set_rsquared = nn.score(X_test, y_test)
test_set_rmse = np.sqrt(mean_squared_error(y_test, pred))

An Example Using sklearn - The Diabetes Dataset
(cont'd)

Print R_squared and RMSE wvalue
print ('R_squared value: ', test_set_rsquared)
print('RMSE: ', test_set_rmse)

Predict unknown data
y_pred = nn.predict(X_test)

plot prediction and actual data
plt.plot(y_test, y_pred, '.')

plot a line, a perfit predict would all fall on this line
x = np.linspace(0, 330, 2)

y =X

plt.plot(x, y)

plt.show()

Further Material

For other details and related material see:

Dimitris C. Dracopoulos, Evolutionary Learning Algorithms for
Neural Adaptive Control, Springer Verlag, London, August 1997,
ISBN: 3-540-76161-6.

http://www.amazon.co.uk/exec/obidos/ASIN/3540761616/qid%3D1106423488/202-4979008-1846244
http://www.amazon.co.uk/exec/obidos/ASIN/3540761616/qid%3D1106423488/202-4979008-1846244
http://www.amazon.co.uk/exec/obidos/ASIN/3540761616/qid%3D1106423488/202-4979008-1846244

