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What is Control and Why it is Needed

▶ A robot needs to move its joints to achieve tasks

▶ A mobile robot moves to different locations

The movement of a robot (joints) is done using actuators.

In general, everything can be considered as control:

▶ Decisions we make affect (control) our future

▶ Decision while driving affect (control) the next position and
the final location

▶ Control theory is a big area used not only in engineering and
robotics, but in computer science

▶ Can be seen as what is the best next action to take (given a
specific state) so as to achieve (optimise) specific objectives!
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Linear vs Nonlinear Systems

▶ In real life all systems are nonlinear, however many of them
can be linearised about their operation point.

Linear systems are easier to analyse and prove mathematically their
behaviour and properties.
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Classical (Traditional) Robot Control

▶ Manipulators and fixed robots are very good in their
operation!

▶ Kinematics, inverse kinematics and dynamics are well
understood for fixed mechanics and robots working in the
same environment.

▶ Their actuators are very well controlled.

▶ Linearity assumptions (or operation near points where their
dynamics is linearised) makes it possible to analyse their
behaviour and stability.

BUT
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Complex Systems

Real Life systems are complex.

▶ Robots which do complex work are non-linear (and their
behaviour/response cannot be linearised). Impossible to
control using classical methods.

▶ Robots need to be adaptive and be able to cope with
unknown environments and unseen situations similarly to how
humans do.
▶ Robots have to be adaptive knowing what that they are going

to do if encountering a partially unknown environment, a
completely unknown environment or unknown difficulties.

▶ We send robots to space.

▶ Reconfigurable Robots
▶ What happens if damage happens in one of the actuators with

the robot or one of their thumbs might hit an obstacle and it
might lose part of it?

=⇒ A new challenge: Intelligent Control based on intelligent
algorithms.
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Robot Driving a Car - Autonomous Driving
ALVINN [Pomerleau 1989] drives 70 mph on highways

https://www.youtube.com/watch?v=IaoIqVMd6tc&t=71s

https://www.youtube.com/watch?v=IaoIqVMd6tc&t=71s


Dimitris C. Dracopoulos 7/27

Perceptron
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{
1 if w0 + w1x1 + · · ·+ wnxn > 0
−1 otherwise.

A simpler vector notation can be used:

o(x⃗) =

{
1 if w⃗ · x⃗ > 0
−1 otherwise.
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Perceptron (cont’d)
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Represents some useful functions

▶ What weights represent g(x1, x2) = AND(x1, x2)?

But some functions are not representable with a single layer of
neurons.

▶ e.g., not linearly separable (such as the XOR function)
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Perceptron training rule

wi ← wi +∆wi

where
∆wi = η(t − o)xi

Where:

▶ t = c(x⃗) is target value

▶ o is perceptron output

▶ η is small constant (e.g., .1) called learning rate

Can prove it will converge:

▶ If training data is linearly separable

▶ and η sufficiently small
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Gradient Descent

To understand, consider simpler linear unit, where

o = w0 + w1x1 + · · ·+ wnxn

Let’s learn wi ’s that minimise the squared error

E [w⃗ ] ≡ 1

2

∑
d∈D

(td − od)
2

where D is set of training examples
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Gradient Descent (cont’d)
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Calculating the Derivative

∂E

∂wi
=

∂
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Application of Gradient Descent

Each training example is a pair of the form ⟨x⃗ , t⟩, where
x⃗ is the vector of input values, and t is the target output
value. η is the learning rate (e.g., .05).

▶ Initialise each wi to some small random value
▶ Until the termination condition is met, Do

▶ Initialise each ∆wi to zero.
▶ For each ⟨x⃗ , t⟩ in training examples, Do

▶ Input the instance x⃗ to the unit and compute the output o
▶ For each linear unit weight wi , Do

∆wi ←− ∆wi + η(t − o)xi

▶ For each linear unit weight wi , Do

wi ←− wi +∆wi
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Multilayer Perceptrons with Hidden Layers and Sigmoid
Units

To overcome the limitations of the single layer Perceptron (linear
separability):
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Sigmoid Unit
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o = σ(net) = 

σ(x) is the sigmoid function

1

1 + e−x

Nice property: dσ(x)
dx = σ(x)(1− σ(x))

We can derive gradient descent rules to train:

▶ One sigmoid unit

▶ Multilayer networks of sigmoid units → Backpropagation
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Backpropagation Algorithm
Initialise all weights to small random numbers.
Until satisfied, Do:
▶ For each training example, Do

1. Input the training example to the network and compute the
network outputs

2. For each output unit k

δk ← ok(1− ok)(tk − ok)

3. For each hidden unit h

δh ← oh(1− oh)
∑

k∈outputs

wk,hδk

4. Update each network weight wi,j

wi,j ← wi,j +∆wi,j

where
∆wi,j = ηδjxi
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More on Backpropagation

▶ Gradient descent over entire network weight vector
▶ Will find a local, not necessarily global error minimum

▶ In practice, often works well (can run multiple times)

▶ Often include weight momentum α

∆wi ,j(n) = ηδjxi + α∆wi ,j(n − 1)

▶ Minimises error over training examples
▶ Will it generalise well to subsequent examples?

▶ Training can take thousands of iterations → slow!

▶ Using network after training is very fast
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Convergence of Backpropagation

Gradient descent to some local minimum

▶ Perhaps not global minimum...

▶ Add momentum

▶ Stochastic gradient descent

▶ Train multiple nets with different initial weights
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Expressive Capabilities of ANNs

Boolean functions:

▶ Every boolean function can be represented by network with
single hidden layer

▶ but might require exponential (in number of inputs) hidden
units

Continuous functions:

▶ Every bounded continuous function can be approximated with
arbitrarily small error, by network with one hidden layer
[Cybenko 1989; Hornik et al. 1989]

▶ Any function can be approximated to arbitrary accuracy by a
network with two hidden layers [Cybenko 1988].
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How to Avoid Overfitting and Improve Generalisation

Split the data into 3 sets, training, testing and validation and stop
the training according to the following diagram.

Validation error

E

R

R

optimum training time

R

O

Training error

t
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Tips for Using Backpropagation

▶ When a sigmoid is used in the output layer, use 0.9 and 0.1
instead of 1 and 0 as the targets, to avoid the saturated parts
of the sigmoid function.

▶ Experiment with different learning rates and number of hidden
nodes and layers. Do not use more than 3 hidden layers.

▶ Preprocess your data by scaling them in the same range. If
some features (columns) are not relevant you can discard
them completely.
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Using the sklearn Python module

To install:

▶ On your own computer (ideally in a virtual environment but
this is not compulsory):

pip install -U scikit-learn

▶ In the university labs the sklearn module is already installed
inside Anaconda. Start the Jupyter lab application from inside
Anaconda and start using it.
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An Example Using sklearn - The Diabetes Dataset

A well-known dataset is the diabetes dataset, used to create a
neural network which can predict whether someone has diabetes.

▶ 442 diabetes patients

▶ Input variables (features): age, sex, body mass index, average
blood pressure, and six blood serum measurements.
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An Example Using sklearn - The Diabetes Dataset
(cont’d)

from sklearn.neural_network import MLPRegressor

from sklearn import datasets

from sklearn.model_selection import train_test_split

import matplotlib.pylab as plt

import numpy as np

from sklearn.metrics import mean_squared_error

# load all the data from the dataset

diabetes = datasets.load_diabetes()

# check the matrix shape (number of features and data for the inputs)

print(diabetes.data.shape)

# check the shape (number of data for targets)

print(diabetes.target.shape)

# feature (column) names

print(diabetes.feature_names)

X = diabetes.data

y = diabetes.target
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An Example Using sklearn - The Diabetes Dataset
(cont’d)

# Create training/ test data split

X_train, X_test, y_train, \

y_test = train_test_split(X, y, test_size=0.2, random_state=1)

# Instantiate MLPRegressor

nn = MLPRegressor(

activation='relu',

hidden_layer_sizes=(10, 10),

alpha=0.001,

max_iter = 10000,

random_state=20,

early_stopping=False

)

# Train the model

nn.fit(X_train, y_train)

# Make prediction

pred = nn.predict(X_test)

# Calculate accuracy and error metrics

test_set_rsquared = nn.score(X_test, y_test)

test_set_rmse = np.sqrt(mean_squared_error(y_test, pred))
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An Example Using sklearn - The Diabetes Dataset
(cont’d)

# Print R_squared and RMSE value

print('R_squared value: ', test_set_rsquared)

print('RMSE: ', test_set_rmse)

# Predict unknown data

y_pred = nn.predict(X_test)

# plot prediction and actual data

plt.plot(y_test, y_pred, '.')

# plot a line, a perfit predict would all fall on this line

x = np.linspace(0, 330, 2)

y = x

plt.plot(x, y)

plt.show()
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Further Material

For other details and related material see:

Dimitris C. Dracopoulos, Evolutionary Learning Algorithms for
Neural Adaptive Control, Springer Verlag, London, August 1997,
ISBN: 3-540-76161-6.

http://www.amazon.co.uk/exec/obidos/ASIN/3540761616/qid%3D1106423488/202-4979008-1846244
http://www.amazon.co.uk/exec/obidos/ASIN/3540761616/qid%3D1106423488/202-4979008-1846244
http://www.amazon.co.uk/exec/obidos/ASIN/3540761616/qid%3D1106423488/202-4979008-1846244

