6ELENO18W - Applied Robotics
Lecture 7: Robot Dynamics - Motion upon
Forces - Part |l

Dr Dimitris C. Dracopoulos



Last Lecture - Newtonian and Lagrangian Mechanics

» Calculate the dynamic equations of motion for a robot,
subject to (generalised) forces, i.e. linear forces and angular
forces (torques), one can use either Newtonian or Lagrangian
mechanics.
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» The equations of motion can be derived using Newton's
second law and Euler's equation of rotational motion or the
Lagrangian energy-based method.

The actuator forces (joint torques) @ can be written as a set of
coupled differential equations:
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» q are the joint coordinates (angles)

P g are the joint velocities

» ¢ are the joint accelerations

> g is a term which represents the torque due to the gravity
acting on the manipulator. This depends only on the
configuration (joint angles q)
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Robot Manipulator Rigid Body Equations of Motion
(cont'd)

Q = M(q)d + C(q,4)q + g(q) + f(q) + I (q)w

» M is the inertia matrix and depends only on the configuration
of the robot (joint angles q)

» C is referred to as the Coriolis and centripetal term and this
represents the gyroscopic and other forces that act on the
robot joints due to the rotation of other robot joints.

» f is the friction force

» J(q) is the manipulator Jacobian, and w € R® is the wrench
(i.e. forces and torques) applied at the end-effector.

= This is the inverse dynamics problem:
Given the motion find the torques: (q,q,q) — Q
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The Newton-Euler Recursive Formula

Solve the equations of motion for the robot serial-link manipulator.
How it works?

» Determine the translational and rotational velocity and
acceleration for the centre of mass of each link.

> Use Netwon's second law for translational motion.
» Use Euler’s law for rotational motion.

» Start at the base of the robot and work outwards to:
» Determine the translational and angular velocity of the centre
of mass for each link in turn.
» Once we reach the end of the robot: start at the tip and work
inwards:

» Determine the force and moment each link exerts on the
inboard link
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Recursive Formula

puma = models.DH.Pumab60() # 6-joint Tobot

zero = np.zeros(6)

# print nominal configuration
print (puma.qn)

puma.plot (puma.qn)

Q = puma.rne(puma.qn, zero, zero)

The robot is not moving (g = 0, § = 0), therefore these torques
must be those required to hold the robot up against gravity.
Without gravity:

Q = puma.rne(puma.qn, zero, zero, gravity=[0, 0, 0])
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Using the Robotics Toolbox for the Newton-Euler
Recursive Formula

Consider now a case where the robot is moving, joint 1 has a

velocity of 1 rad/s~!. In the absence of gravity, the required joint
torques are:

puma.rne(puma.qn, [1, O, O, O, O, O], zero, gravity=[0, O, 0])
The torque on joint 0 is that needed to overcome friction which
always opposes the motion. The nonzero torques need to be

exerted on the joints to oppose the gyroscopic torques that joint 0
motion is exerting on those joints.
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Payload

A robot needs has to carry an object and place it somewhere else.
This is the end-effector's payload.
» The last link in the chain of the robot has to hold the payload.
» This propagates down the chain towards the base of the robot.

» All joints of the robot need to help hold up the payload to
stop it being pulled down by the force of gravity.

Effect of the payload:
» As the mass of the object (payload) increases:
= One joint will hit its torque limit it will become overloaded.
And that's the maximum payload that the robot can hold.
» The maximum payload of the robot is a function of the torque
capabilities of the motors but it is also a function of the
configuration (angles) of the robot links.
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Calculating the Gravity load (torques) Using the Robotics
Toolbox

Q = puma.gravload(puma.qn)

# The default gravitational force in Earth
puma.gravity

# Gravity in moon:

print (puma.gravity / 6)

# Place the robot in moon
puma.gravity = puma.gravity / 6

# In moon the torques required are reduced:

print (puma.gravload(puma.qn))



