
Dimitris C. Dracopoulos 1/10

6ELEN018W - Applied Robotics
Lecture 7: Robot Dynamics - Motion upon

Forces - Part II
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Last Lecture - Newtonian and Lagrangian Mechanics

▶ Calculate the dynamic equations of motion for a robot,
subject to (generalised) forces, i.e. linear forces and angular
forces (torques), one can use either Newtonian or Lagrangian
mechanics.
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Robot Manipulator Rigid Body Equations of Motion
Consider serial-link manipulator and the motor which actuates each
joint j , j ∈ {0, . . . ,N}.

▶ The inertia that the motor experiences is a function (depends)
of the configuration of the outward links ji+1, ji+2, . . . , jN .

▶ The equations of motion can be derived using Newton’s
second law and Euler’s equation of rotational motion or the
Lagrangian energy-based method.

The actuator forces (joint torques) Q can be written as a set of
coupled differential equations:

Q = M(q)q̈ + C (q, q̇)q̇ + g(q) + f (q̇) + JT (q)w (1)

▶ q are the joint coordinates (angles)
▶ q̇ are the joint velocities
▶ q̈ are the joint accelerations
▶ g is a term which represents the torque due to the gravity

acting on the manipulator. This depends only on the
configuration (joint angles q)
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Robot Manipulator Rigid Body Equations of Motion
(cont’d)

Q = M(q)q̈ + C (q, q̇)q̇ + g(q) + f (q̇) + JT (q)w

▶ M is the inertia matrix and depends only on the configuration
of the robot (joint angles q)

▶ C is referred to as the Coriolis and centripetal term and this
represents the gyroscopic and other forces that act on the
robot joints due to the rotation of other robot joints.

▶ f is the friction force

▶ J(q) is the manipulator Jacobian, and w ∈ R6 is the wrench
(i.e. forces and torques) applied at the end-effector.

=⇒ This is the inverse dynamics problem:
Given the motion find the torques: (q, q̇, q̈) → Q
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The Newton-Euler Recursive Formula

Solve the equations of motion for the robot serial-link manipulator.

How it works?
▶ Determine the translational and rotational velocity and

acceleration for the centre of mass of each link.
▶ Use Netwon’s second law for translational motion.
▶ Use Euler’s law for rotational motion.

▶ Start at the base of the robot and work outwards to:
▶ Determine the translational and angular velocity of the centre

of mass for each link in turn.

▶ Once we reach the end of the robot: start at the tip and work
inwards:
▶ Determine the force and moment each link exerts on the

inboard link
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Using the Robotics Toolbox for the Newton-Euler
Recursive Formula

puma = models.DH.Puma560() # 6-joint robot

zero = np.zeros(6)

# print nominal configuration

print(puma.qn)

puma.plot(puma.qn)

Q = puma.rne(puma.qn, zero, zero)

The robot is not moving (q = 0, q̇ = 0), therefore these torques
must be those required to hold the robot up against gravity.
Without gravity:

Q = puma.rne(puma.qn, zero, zero, gravity=[0, 0, 0])
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Using the Robotics Toolbox for the Newton-Euler
Recursive Formula

Consider now a case where the robot is moving, joint 1 has a
velocity of 1 rad/s−1. In the absence of gravity, the required joint
torques are:

puma.rne(puma.qn, [1, 0, 0, 0, 0, 0], zero, gravity=[0, 0, 0])

The torque on joint 0 is that needed to overcome friction which
always opposes the motion. The nonzero torques need to be
exerted on the joints to oppose the gyroscopic torques that joint 0
motion is exerting on those joints.
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Gravity and Payload

The equations of motion (1) of the serial link robot manipulator:

Q = M(q)q̈ + C (q, q̇)q̇ + g(q) + f (q̇) + JT (q)w

▶ Gravity is the force that acts on the robot even if it’s not
moving.

▶ The torque that counteracts gravity and stops the arm from
collapsing under its own weight.
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Payload

A robot needs has to carry an object and place it somewhere else.
This is the end-effector’s payload.

▶ The last link in the chain of the robot has to hold the payload.

▶ This propagates down the chain towards the base of the robot.

▶ All joints of the robot need to help hold up the payload to
stop it being pulled down by the force of gravity.

Effect of the payload:

▶ As the mass of the object (payload) increases:

=⇒ One joint will hit its torque limit it will become overloaded.
And that’s the maximum payload that the robot can hold.

▶ The maximum payload of the robot is a function of the torque
capabilities of the motors but it is also a function of the
configuration (angles) of the robot links.
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