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Kinematics vs Dynamics

▶ Kinematic Equations: describe the motion of a robot without
consideration of the forces and torques producing the motion

▶ Dynamic Equations: describe the relationship between force
and motion

The equations of motion are important for the:

1. Design of robots

2. Simulation and animation of motion

3. Design of control algorithms for the robot
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Newton’s Laws of Motion

Newton’s 1st Law: Inertia

Every object will remain at rest or in uniform motion in a
straight line unless compelled to change its state by the action
of an external force.

▶ This tendency to resist changes in a state of motion is
inertia

▶ If all the external forces cancel each other out, then there
is no net force acting on the object

▶ If there is no net force acting on the object, then the
object will maintain a constant velocity
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Newton’s Second Law: Force

F = m · ÿ

where

▶ ÿ = a the acceleration of a body

▶ F is the total force acting on the body

A force is equal to the change of momentum (mass times velocity)
per change in time:

F = m
Vt1 − Vt0

t1 − t0

assuming mass m does not change over time.
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Newton’s Third Law: Action and Reaction

Whenever one object exerts a force on a second object, the second
object exerts an equal and opposite force on the first.

▶ If object A exerts a force on object B, object B also exerts an
equal and opposite force on object A.

Examples:

▶ The motion of a spinning ball, the air is deflected to one side,
and the ball reacts by moving in the opposite direction.

▶ The motion of a jet engine produces thrust and hot exhaust
gases flow out the back of the engine, and a thrusting force is
produced in the opposite direction.
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Forces and Torques

▶ Torque (or moment of force) is the rotational analogue of a
linear force.
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Forces and Torques (cont’d)

The torque describes the rate of change of angular momentum for
a body.

τ = r × F = r · F · sin θ (1)

where

▶ × is the cross product (vector product) between two vectors

▶ r is the position vector from the point that the torque is
measured to the point where the force F is applied

▶ θ is the angle between the force vector and the position vector
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Robots Gripping Objects
Currently most industrial robots use 2 fingers to grasp an object.

Example:
A robot tries to hold a rectangular block object with its 2 fingers.
The weight force W is applied at the centre of mass. The 2 fingers
apply 2 forces F1 and F2 at the top and the bottom of the object
respectively and these forces are at a distance x .
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How a Rigid Body Reaches Equilibrium (Balance)?

1. The (vector) sum of all forces should be 0.

2. The sum of the moments of the forces (torques) must equal
zero.

Is this sufficient?
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The Robot Gripping Example (cont’d)

Apply the equilibrium principles for a rigid body:

What does this mean?

To balance the forces:

F2 = F1 +W

To balance the torques:

F1 ∗ l − F2 ∗ (l − x) = 0

Solve this system of equations for the forces of the 2 robot fingers.
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Newtonian vs Lagrangian Mechanics

To calculate the dynamic equations of motion for a robot, subject
to (generalised) forces, i.e. linear forces and angular forces
(torques), one can use either Newtonian or Lagrangian mechanics.
▶ Newtonian Mechanics

▶ Easier for simpler systems.
▶ More familiar for some people
▶ Calculate the sum of all linear forces and sum of all torques:∑

F̄ = mā,
∑

T̄ = I ᾱ
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Newtonian vs Lagrangian Mechanics (cont’d)

▶ Lagrangian Mechanics
▶ Easier for more complicated systems.
▶ Based on system’s energies
▶ Systematic approach
▶ Lagrangian is the difference between kinetic and potential

energies of the system:

L = K − P
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The Euler-Lagrange Equations
Consider a 1-degree of freedom system:

By Newton’s second law:

mÿ = f −mg (2)

The left hand side can be written as:

mÿ =
d

dt
(mẏ) =

d

dt

∂

∂ẏ
(
1

2
mẏ2) =

d

dt

∂K
∂ẏ

(3)

where K = 1
2mẏ2 is the kinetic energy.
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The Euler-Lagrange Equations (cont’d)
The gravitational force in (2) can be written as:

mg =
∂

∂y
(mgy) =

∂P
∂y

(4)

where P = mgy is the potential energy due to gravity.
The difference between the kinetic and the potential energy is
called the Lagrangian L of the system:

L = K − P =
1

2
mẏ2 −mgy (5)

∂L
∂ẏ

(5)
=

∂K
∂ẏ

and
∂L
∂y

(5)
= −∂P

∂y
(6)

Equation (2) can be written as the Euler-Lagrange equation:

d

dt

∂L
∂ẏ

− ∂L
∂y

= f (7)
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How to Use the Euler-Lagrange Equation?

To calculate the dynamic equations of motion for a system such as
a serial-link robot, the Euler Lagrange equation can be used:

▶ Write the kinetic and potential energies of the system in terms
of a set of generalised coordinates (q1, q2, . . . qn) where n is
the degrees of freedom of the system. qk can be linear
distances or angles:

d

dt

∂L
∂q̇k

− ∂L
∂qk

= τk , k = 1, . . . , n

where τk is the (generalised) force (linear force or torque)
associated with qk

This is a system of coupled second-order differential equations that
can be solved using numerical methods.
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How to Use the Euler-Lagrange Equation? (cont’d)

For example, using the Euler-Lagrange equation for a system with
both linear forces and angular forces (torques) we can write:

Fi =
∂

∂t
(
∂L
∂ẋi

)− ∂L
∂xi

(8)

Ti =
∂

∂t
(
∂L
∂θ̇i

)− ∂L
∂θi

(9)

where L is the Lagrangian:

L = K − P
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An Example of Deriving the Dynamic Equations of Motion

Derive the dynamic equations of motion for the 1-DOF cart-spring
shown below, using both Lagrangian mechanics as well as
Newtonian mechanics.

The motion of the cart is constrained along the x-axis. Because
this is a 1-DOF system there is only one equation describing the
linear motion.
Only equation (8) is used and not (9) since there is no angular
motion.
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An Example of Deriving the Dynamic Equations of Motion
Euler-Lagrange method:
▶ Kinetic energy:

K =
1

2
mv2

▶ Potential energy:

P =
1

2
kx2

▶ Lagrangian:

L = K − P =
1

2
mv2 − 1

2
kx2

▶ Lagrangian derivatives:

∂L
∂ẋ

= mẋ ,
d

dt
(mẋ) = mẍ ,

∂L
∂x

= −kx

▶ The equation of motion for the cart:

F = mẍ + kx
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An Example of Deriving the Dynamic Equations of Motion
(cont’d)

Newtonian method:

∑
F̄ = mā ⇒ F − kx = max ⇒ F = max + kx

which is the same formula which was derived using the
Euler-Lagrange equation.


