
Dimitris C. Dracopoulos 1/24

6ELEN018W - Applied Robotics
Lecture 4: Robot Motion - 3D Velocity

Kinematics

Dr Dimitris C. Dracopoulos

Dimitris C. Dracopoulos 2/24

Previously - 2D Pose and Forward Kinematics

The pose of the end-effector is:

0ξE = ξr (q0)⊕ ξtx (a1)⊕ ξr (q1)⊕ ξtx (a2) (1)

Dimitris C. Dracopoulos 3/24

Previously - 2D Pose and Forward Kinematics (cont’d)

In Python toolbox:

>>> a1 = 1
>>> a2 = 1

>>> e = ET2.R()*ET2.tx(a1)*ET2.R()*ET2.tx(a2)

>>> e.fkine(np.deg2rad([90, 30])).printline()

Equivalently:

>>> T = SE2.Rot(np.deg2rad(90)) * SE2.Tx(a1) \
* SE2.Rot(np.deg2rad(30)) * SE2.Tx(a2)

>>> T.printline()

>>> e.joints()

Dimitris C. Dracopoulos 4/24

Pose and Forward Kinematics in 3D

Similar approach with the 2D case, apply successive
transformations using the 3D homogeneous transformation
matrices of size 4× 4.

>>> a1 =1

>>> a2 = 1

>>> e = ET.Rz() * ET.Ry() \

* ET.tz(a1) * ET.Ry() * ET.tz(a2) \

* ET.Rz() * ET.Ry() * ET.Rz()

>>> e.n # number of joints

>>> e.structure

Dimitris C. Dracopoulos 5/24

Forward Kinematics as a Chain of Robot Links
A robot can be described as a sequence of links which are attached
to joints.
In 2D:

>>> a1=1; a2 =1;

>>> link1 = Link2(ET2.R(), name="link1")

>>> link2 = Link2(ET2.tx(a1)*ET2.R(), name="link2",parent=link1)

>>> link3 = Link2(ET2.tx(a2), name="link3", parent=link2)

>>> robot = ERobot2([link1, link2, link3], name="my_robot")

Dimitris C. Dracopoulos 6/24

Forward Kinematics as a Chain of Robot Links (cont’d)

Pose of the end-effector for a specific configuration of the joint
angles:

>>> robot.fkine(np.deg2rad([30, 40])).printline()

Plot at this configuration:

robot.plot(np.deg2rad([30, 40]));

Animation between an initial and a target configuration:

>>> q = np.array([np.linspace(0, pi, 100), \
np.linspace(0, -2*pi, 100)]);

>>> q = q.T; # take the transpose of q

>> robot.plot(q)

Dimitris C. Dracopoulos 7/24

Forward Kinematics as a Chain of Robot Links - 3D Case

Rotation about z , rotation about y , translation along z by a1,
rotation about y , translation along z by a2, rotation about z ,
rotation about y , rotation about z .

e = ET.Rz()*ET.Ry()*ET.tz(a1)*ET.Ry()*ET.tz(a2)*ET.Rz() \
*ET.Ry()*ET.Rz()*ET.Rx()

a1 = 1 ; a2 = 1

ERobot(e)

Dimitris C. Dracopoulos 8/24

Pre-defined Robot Models in the Python Robotics Toolbox

>>> models.list(type="ETS")

class manufacturer DoF structure

Panda | Franka Emika 7 RRRRRRR

Frankie | Franka Emika, Omron 9 RPRRRRRRR

Puma560 | Unimation 6 RRRRRR

Planar_Y | 6 RRRRRR

GenericSeven| Jesse's Imagination 7 RRRRRRR

XYPanda | Franka Emika 9 PPRRRRRRR

To create an instance of a Puma560 robot:

>>> p560 = models.ETS.Puma560()

>>> p560.qr # choose a pre-defined configuration

Dimitris C. Dracopoulos 9/24

Pre-defined Robot Models in the Python Robotics Toolbox
(cont’d)

A new configuration can be added:

>>> p560.addconfiguration("my_config", \
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6])

and accessed as a dictionary

>>> p560.configs["my_config"]

The forward kinematics for a configuration can be computed:

>>> p560.fkine(p560.qr)
print the pose in compact form

>>> p560.fkine(p560.qr).printline()

plotted in a configuration:

>>> p560.plot(p560.qr)

Dimitris C. Dracopoulos 10/24

Motion in 3D

Previously covered : If the joints move at specific velocities, what is
the velocity of the end-effector? (2D case)

▶ Rate of change of position: Speed (velocity): v = (ẋ , ẏ , ż)

▶ Rate of change of orientation: Angular velocity:
ω = (ωx , ωy , ωz) = (qx , qy , qz)

All of these are with reference to a specific coordinate frame (or
simply the reference coordinate frame).

Dimitris C. Dracopoulos 11/24

Translational and Rotational Motion of a Robot’s
End-Effector

The spatial velocity (twist) consists of:

ν = (vx , vy , vz , ωx , ωy , ωz)

Dimitris C. Dracopoulos 12/24

Previously - End-Effector Velocity in a 2-Joint Robot (2D)

(
x
y

)
=

(
a1cos(q1) + a2cos(q1 + q2)
a1sin(q1) + a2sin(q1 + q2)

)
▶ If joint angles change over time (the robot moves):

q1 = q1(t), q2 = q2(t)

▶ The velocity of the end-effector can be calculated by
computing the derivative (using the chain rule):

ẋ = −a1q̇1sin(q1)− a2(q̇1 + q̇2)sin(q1 + q2)

ẏ = a1q̇1cos(q1) + a2(q̇1 + q̇2)cos(q1 + q2)

Dimitris C. Dracopoulos 13/24

Previously - End-Effector Velocity in a 2-Joint Robot (2D)

(
ẋ
ẏ

)
=

(
−a1sin(q1)− a2sin(q1 + q2)− a2sin(q1 + q2)
a1cos(q1) + a2cos(q1 + q2)a2cos(q1 + q2)

)(
q̇1
q̇2

)
The Jacobian J(q):

v = J(q)q̇

Dimitris C. Dracopoulos 14/24

Jacobian Calculation in the Python Robotics Toolbox

>>> import sympy

>>> a1, a2 = (1, 2)

>>> e = ERobot2(ET2.R()*ET2.tx(a1)*ET2.R()*ET2.tx(a2))

>>> q = symbols("q:2") # sympy is already imported

The forward kinematics are calculated as:

>>> TE = e.fkine(q)

Translation part, i.e location of end-effector p = (x, y) :

>>> p = TE.t

The Jacobian is calculated:

>>> J = Matrix(p).jacobian(q)

The velocity of the end-effector is calculated as:

ṗ = J(q)q̇ (2)

Dimitris C. Dracopoulos 15/24

General Form of the Forward Kinematics using the
Jacobian

The derivative of the spatial velocity ν of the end-effector can be
written as:

ν =



vx
vy
vz
ωx

ωy

ωz

 = J(q)q̇

where J(q) is an M × N matrix.

▶ M = 6 is the dimension of the task space (3 translational and
3 rotational velocity components)

▶ N is the number of robot joints

Dimitris C. Dracopoulos 16/24

Calculating the Jacobian of Robots in the Python Robotics
Toolbox

Call the jacob0 method on any robot object in the toolbox.

>>> p560 = models.ETS.Puma560()

>>> p560.jacob0(p560.qr) # Jacobian for the qr configuration

▶ One column per joint.

Dimitris C. Dracopoulos 17/24

Velocity of a n-joint Robot Arm

Previous approach does not scale well for more joints. Even for a
6-joint robot it will take too much to do the calculations.
How to do this then?

▶ Relationship between a change of a single joint and the
change in the end-effector.

Dimitris C. Dracopoulos 18/24

Simple Numerical Calculation of Derivatives

In a numerical simulation, if we take small enough time steps, the
derivative can be calculated as:

f (xt+1)− f (xt)

∆t
(3)

Forward kinematics:

▶ An approximation of the forward kinematics changes as a
function of changes of a single joint angle.

▶ The mathematical description of this can be a bit difficult,
therefore it will be skipped.

▶ One way to think about this, is that the total spatial velocity
is the sum of the individual components due to a change in
each angle (q1, i.e column 1 of the Jacobian, q2, i.e column 2
of the Jacobian, etc).

▶ Use the jacob0 method of the toolbox instead.

Dimitris C. Dracopoulos 19/24

How to achieve a Specific End-Effector Spatial Velocity

What velocities the joints should have in order to achieve a specific
end-effector spatial velocity?
Forward kinematics:

ν = J(q)q̇

Inverting the Jacobian:

q̇ = J(q)−1ν

For a 6-joint robot, J(q) is a 6× 6 matrix, therefore its inverse
can be calculated.

▶ Unless the matrix is singular (the determinant is zero), in
which case the inverse cannot be calculated!

Dimitris C. Dracopoulos 20/24

Example: Inverting the Jacobian matrix for a Puma560
Robot

>>> p560 = models.ETS.Puma560()

>>> J = p560.jacob0(p560.qr)

>>> np.linalg.det(J)

>>> J = p560.jacob0(p560.qz)

add a new configuration

>>> p560.addconfiguration("qn", [0, math.pi/4, math.pi, \

0, math.pi/4, 0])

>>> J = p560.jacob0(p560.configs["qn"])

>>> np.linalg.det(J)

>>> np.linalg.inv(J)

Dimitris C. Dracopoulos 21/24

How to Control the Spatial Velocity of an End-Effector?

1. Choose the spatial velocity ν = (vx , vy , vz , ωx , ωy , ωz)

2. Calculate the required joint velocities:

q̇ = J(q)−1ν

3. Move the joints at that speed using the actuators (control
motors)

4. But after a short time, the angle q have changed, therefore
the above calculation is not valid any more!

5. The Jacobian J(q) needs to be re-calculated.

Dimitris C. Dracopoulos 22/24

How to Write a Program to Control the Spatial Velocity of
the End-Effector

▶ Choose the spatial velocity ν = (vx , vy , vz , ωx , ωy , ωz)

Repeat for ever:

1. Calculate the required joint velocities:

q̇ = J(qk)
−1ν

2. Move the joints at that speed using the actuators (control
motors)

3. Compute next joint angles: qk+1 = qk +∆t q̇
4. k = k + 1

Dimitris C. Dracopoulos 23/24

Python Example for Controlling the Motion of the
End-Effector

>>> p560 = models.ETS.Puma560()
>>> p560.addconfiguration("qn", [0, math.pi/4, math.pi, \

0, math.pi/4, 0])

>>> J = p560.jacob0(p560.configs["qn"])

>>> nu = np.array([0, 0, 1, 0, 0, 0]) # desired target v of end-effector

>>> np.linalg.inv(J)@nu # angle velocities to be applied

Dimitris C. Dracopoulos 24/24

Under-Actuated and Over-Actuated Robots

Under-actuated Robots:

▶ A robot with N < 6 joints is under-actuated.

▶ The Jacobian is not a square matrix therefore it cannot be
inverted.

▶ Remove from the spatial velocity components, the ones which
cannot be controlled and invert the Jacobian.

Over-actuated Robots:

▶ A robot with N > 6 joints is over-actuated (spare joints).

▶ The Jacobian is not a square matrix therefore it cannot be
inverted.

▶ A matrix called pseudo-inverse can be computed q̇ = J(q)+ν.

J+ = (JTJ)−1JT

