6ELENO18W - Applied Robotics
Lecture 4: Robot Motion - 3D Velocity
Kinematics

Dr Dimitris C. Dracopoulos

Previously - 2D Pose and Forward Kinematics

Uy

¢'(q0) &'ar)

pose 0

£'(ay))

The pose of the end-effector is:

% = € (q0) ® £ (al) B & (qn) @ £%(a2)

Previously - 2D Pose and Forward Kinematics (cont'd)

In Python toolbox:

>>> al = 1
>>> a2 =1

>>> e = ET2.R()*#ET2.tx(al)*ET2.R() *ET2.tx(a2)

>>> e.fkine(np.deg2rad([90, 30])).printline()
Equivalently:

>>> T = SE2.Rot(np.deg2rad(90)) * SE2.Tx(al) \
* SE2.Rot(np.deg2rad(30)) * SE2.Tx(a2)

>>> T.printline()

>>> e.joints()

Pose and Forward Kinematics in 3D

Similar approach with the 2D case, apply successive
transformations using the 3D homogeneous transformation
matrices of size 4 x 4.

>>> al =1

>>> a2 = 1

>>> e = ET.Rz() * ET.Ry() \
* ET.tz(al) * ET.Ry() * ET.tz(a2) \
* ET.Rz() * ET.Ry() * ET.Rz()

>>> e.n # number of joints

>>> e.structure

Forward Kinematics as a Chain of Robot Links

A robot can be described as a sequence of links which are attached
to joints.
In 2D:

>>>

>>>

>>>

>>>

>>>

al=1;
linki1
1link2
1ink3

robot

a2 =1;

Link2(ET2.R(), name="linki")
Link2(ET2.tx(al)*ET2.R(), name="1ink2",,parent=1ink1)
Link2(ET2.tx(a2), name="1ink3", parent=1ink2)

ERobot2([linkl, link2, 1link3], name="my_robot")

Forward Kinematics as a Chain of Robot Links (cont'd)

Pose of the end-effector for a specific configuration of the joint
angles:

>>> robot.fkine(np.deg2rad([30, 40])).printline()

Plot at this configuration:

robot.plot(np.deg2rad([30, 40]));

Animation between an initial and a target configuration:

>>> q = np.array([np.linspace(0, pi, 100), \
np.linspace(0, -2*pi, 100)1);

>>> q =q.T; # take the transpose of q

>> robot.plot(q)

Forward Kinematics as a Chain of Robot Links - 3D Case

Rotation about z, rotation about y, translation along z by aj,
rotation about y, translation along z by a, rotation about z,
rotation about y, rotation about z.

e = ET.Rz()*ET.Ry O *ET.tz(al)*ET.Ry O *ET.tz(a2)*ET.Rz() \
*ET.Ry O *ET.Rz () *ET.Rx ()

ERobot (e)

Pre-defined Robot Models in the Python Robotics Toolbox

>>> models.list(type="ETS")

class manufacturer DoF structure
Panda I Franka Emika 7 RRRRRRR
Frankie | Franka Emika, Omron 9 RPRRRRRRR
Puma560 I Unimation 6 RRRRRR
Planar_Y | 6 RRRRRR
GenericSeven | Jesse's Imagination 7 RRRRRRR
XYPanda | Franka Emika 9 PPRRRRRRR

To create an instance of a Puma560 robot:
>>> p560 = models.ETS.Puma560()

>>> pb60.qr # choose a pre-defined configuration

Pre-defined Robot Models in the Python Robotics Toolbox
(cont'd)

A new configuration can be added:

>>> pb60.addconfiguration("my_config", \
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6]1)

and accessed as a dictionary
>>> p560.configs["my_config"]

The forward kinematics for a configuration can be computed:

>>> pb60.fkine (p560.qr)

print the pose in compact form
>>> p560.fkine(p560.qr) .printline()
plotted in a configuration:

>>> p560.plot (p560.qr)

Motion in 3D

Previously covered: If the joints move at specific velocities, what is
the velocity of the end-effector? (2D case)
» Rate of change of position: Speed (velocity): v = (x,y, z)
» Rate of change of orientation: Angular velocity:
w = (wx, Wy, wz) = (Gx, Gy, G2)
All of these are with reference to a specific coordinate frame (or
simply the reference coordinate frame).

Translational and Rotational Motion of a Robot’s
End-Effector

The spatial velocity (twist) consists of:

VvV = (VX7 Vy, V27wxawy7w2)

Previously - End-Effector Velocity in a 2-Joint Robot (2D)

® 93

< X > _ (ajcos(q1) + axcos(q1 + q2))

y aisin(q1) + axsin(q1 + q2)

» If joint angles change over time (the robot moves):

a1 = qi(t), g2 = q2(t)

» The velocity of the end-effector can be calculated by
computing the derivative (using the chain rule):

x = —aiqisin(ql) — a2(qg1 + G2)sin(ql + q2)
y = a1qicos(q1) + a2(dq1 + g2)cos(ql + q2)

Previously - End-Effector Velocity in a 2-Joint Robot (2D)

(X > _ < —aysin(ql) — azsin(ql + q2) — azsin(ql + q2)) < g1)

y aycos(q1) + azcos(ql + g2)azcos(ql + q2) Go

The Jacobian J(q):

v=J(q)q

Jacobian Calculation in the Python Robotics Toolbox
>>> import sympy

>>> al, a2 = (1, 2)

>>> e ERobot2(ET2.R()*ET2.tx(al) *ET2.R()*ET2.tx(a2))

>>> q = symbols("q:2") # sympy is already imported
The forward kinematics are calculated as:

>>> TE = e.fkine(q)

Translation part, i.e location of end-effector p = (x, y) :
>>> p = TE.t

The Jacobian is calculated:

>>> J = Matrix(p).jacobian(q)

The velocity of the end-effector is calculated as:

p=J(q)q

General Form of the Forward Kinematics using the
Jacobian

The derivative of the spatial velocity v of the end-effector can be
written as:

v= =J(9)q

where J(q) is an M x N matrix.

» M =6 is the dimension of the task space (3 translational and
3 rotational velocity components)

» N is the number of robot joints

Calculating the Jacobian of Robots in the Python Robotics
Toolbox

Call the jacobO method on any robot object in the toolbox.
>>> p560 = models.ETS.Puma560()

>>> pb60.jacob0(p560.qr) # Jacobian for the gr configuration

» One column per joint.

Velocity of a n-joint Robot Arm

Previous approach does not scale well for more joints. Even for a
6-joint robot it will take too much to do the calculations.
How to do this then?

P Relationship between a change of a single joint and the
change in the end-effector.

Simple Numerical Calculation of Derivatives

In a numerical simulation, if we take small enough time steps, the
derivative can be calculated as:

f(xeq1) — F(xt)
—— Y oy, (3)

Forward kinematics:

» An approximation of the forward kinematics changes as a
function of changes of a single joint angle.

» The mathematical description of this can be a bit difficult,
therefore it will be skipped.

» One way to think about this, is that the total spatial velocity
is the sum of the individual components due to a change in
each angle (g1, i.e column 1 of the Jacobian, gy, i.e column 2
of the Jacobian, etc).

» Use the jacobO method of the toolbox instead.

How to achieve a Specific End-Effector Spatial Velocity

What velocities the joints should have in order to achieve a specific
end-effector spatial velocity?
Forward kinematics:

v=J(q)q

Inverting the Jacobian:

g=J(q) v
For a 6-joint robot, J(q) is a 6 x 6 matrix, therefore its inverse
can be calculated.

» Unless the matrix is singular (the determinant is zero), in
which case the inverse cannot be calculated!

Example: Inverting the Jacobian matrix for a Pumab60
Robot

>>> p560 = models.ETS.Puma560()

>>> J = p560. jacob0(p560.qr)

>>> np.linalg.det(J)

>>> J = pb60.jacob0(p560.q9z)

add a new configuration

>>> pb60.addconfiguration("qn", [0, math.pi/4, math.pi, \
0, math.pi/4, 0]1)

>>> J = pb60.jacob0(p560.configs["qn"])

>>> np.linalg.det(J)

>>> np.linalg.inv(J)

How to Control the Spatial Velocity of an End-Effector?

1. Choose the spatial velocity v = (v, vy, vz, Wy, Wy, w;)

2. Calculate the required joint velocities:
g=J(qg) v

3. Move the joints at that speed using the actuators (control
motors)

4. But after a short time, the angle g have changed, therefore
the above calculation is not valid any more!

5. The Jacobian J(q) needs to be re-calculated.

How to Write a Program to Control the Spatial Velocity of
the End-Effector

» Choose the spatial velocity v = (v, vy, vz, Wy, Wy, w;)
Repeat for ever:

1. Calculate the required joint velocities:

g=J(q) v
2. Move the joints at that speed using the actuators (control
motors)

3. Compute next joint angles: qx11 = qx + Arq
4. k=k+1

Python Example for Controlling the Motion of the
End-Effector

>>> p560 = models.ETS.Puma560()

>>> pb60.addconfiguration("qn", [0, math.pi/4, math.pi, \
0, math.pi/4, 0])

>>> J = pb60.jacob0(p560.configs["qn"])

>>> nu = np.array([0, 0, 1, 0, 0, 0]) # desired target v of end

>>> np.linalg.inv(J)0nu # angle wvelocities to be applied

Under-Actuated and Over-Actuated Robots

Under-actuated Robots:
> A robot with N < 6 joints is under-actuated.

» The Jacobian is not a square matrix therefore it cannot be
inverted.

> Remove from the spatial velocity components, the ones which
cannot be controlled and invert the Jacobian.

Over-actuated Robots:
» A robot with N > 6 joints is over-actuated (spare joints).

» The Jacobian is not a square matrix therefore it cannot be
inverted.

» A matrix called pseudo-inverse can be computed ¢ = J(q)"v.

J-‘r — (JTJ)—IJT

