6ELENO18W - Applied Robotics
Lecture 4: Robot Motion - 3D Velocity
Kinematics

Dr Dimitris C. Dracopoulos

Previously - 2D Pose and Forward Kinematics

Uy

Previously - 2D Pose and Forward Kinematics

Uy

Previously - 2D Pose and Forward Kinematics

Uy

¢'(q0) &'ar)

pose 0

£'(ay))

The pose of the end-effector is:

% = € (q0) ® £%(al) ® & (qn) @ £%(a2)

Previously - 2D Pose and Forward Kinematics (cont'd)

In Python toolbox:
>>> al =1

Previously - 2D Pose and Forward Kinematics (cont'd)

In Python toolbox:
>>> al 1
>>> a2 1

Previously - 2D Pose and Forward Kinematics (cont'd)

In Python toolbox:

>>> al =1
>>> a2 =1

>>> e = ET2.R()*ET2.tx(al) *ET2(R)*ET2.tx(a2)

Previously - 2D Pose and Forward Kinematics (cont'd)

In Python toolbox:

>>> al =1
>>> a2 =1

>>> e = ET2.R()*ET2.tx(al) *ET2(R)*ET2.tx(a2)

>>> e.fkine(np.deg2rad([90, 30])).printline()

Previously - 2D Pose and Forward Kinematics (cont'd)

In Python toolbox:

>>> al =1
>>> a2 =1

>>> e = ET2.R()*ET2.tx(al) *ET2(R)*ET2.tx(a2)

>>> e.fkine(np.deg2rad([90, 30])).printline()
Equivalently:

>>> T = SE2.Rot(np.deg2rad(90)) * SE2.Tx(al) \
* SE2.Rot(np.deg2rad(30)) * SE2.Tx(a2)

Previously - 2D Pose and Forward Kinematics (cont'd)

In Python toolbox:

>>> al =1
>>> a2 =1

>>> e = ET2.R()*ET2.tx(al) *ET2(R)*ET2.tx(a2)

>>> e.fkine(np.deg2rad([90, 30])).printline()
Equivalently:

>>> T = SE2.Rot(np.deg2rad(90)) * SE2.Tx(al) \
* SE2.Rot(np.deg2rad(30)) * SE2.Tx(a2)

>>> T.printline()

Previously - 2D Pose and Forward Kinematics (cont'd)

In Python toolbox:

>>> al =1
>>> a2 =1

>>> e = ET2.R()*ET2.tx(al) *ET2(R)*ET2.tx(a2)

>>> e.fkine(np.deg2rad([90, 30])).printline()
Equivalently:

>>> T = SE2.Rot(np.deg2rad(90)) * SE2.Tx(al) \
* SE2.Rot(np.deg2rad(30)) * SE2.Tx(a2)

>>> T.printline()

>>> e.joints()

Pose and Forward Kinematics in 3D

Similar approach with the 2D case, apply successive
transformations using the 3D homogeneous transformation
matrices of size 4 x 4.

Pose and Forward Kinematics in 3D

Similar approach with the 2D case, apply successive
transformations using the 3D homogeneous transformation
matrices of size 4 x 4.

>>> al =1

Pose and Forward Kinematics in 3D

Similar approach with the 2D case, apply successive
transformations using the 3D homogeneous transformation
matrices of size 4 x 4.

>>> al =1

>>> a2 = 1

Pose and Forward Kinematics in 3D

Similar approach with the 2D case, apply successive
transformations using the 3D homogeneous transformation
matrices of size 4 x 4.

>>> al =1

>>> a2 = 1
>>> e = ET.Rz() * ET.Ry() \

* ET.tz(al) * ET.Ry() * ET.tz(a2) \
* ET.Rz() * ET.Ry() * ET.Rz()

Pose and Forward Kinematics in 3D

Similar approach with the 2D case, apply successive
transformations using the 3D homogeneous transformation
matrices of size 4 x 4.

>>> al =1

>>> a2 = 1

>>> e = ET.Rz() * ET.Ry() \
* ET.tz(al) * ET.Ry() * ET.tz(a2) \
* ET.Rz() * ET.Ry() * ET.Rz()

>>> e.n # number of joints

Pose and Forward Kinematics in 3D

Similar approach with the 2D case, apply successive
transformations using the 3D homogeneous transformation
matrices of size 4 x 4.

>>> al =1

>>> a2 = 1

>>> e = ET.Rz() * ET.Ry() \
* ET.tz(al) * ET.Ry() * ET.tz(a2) \
* ET.Rz() * ET.Ry() * ET.Rz()

>>> e.n # number of joints

>>> e.structure

Forward Kinematics as a Chain of Robot Links

A robot can be described as a sequence of links which are attached
to joints.

Forward Kinematics as a Chain of Robot Links
A robot can be described as a sequence of links which are attached

to joints.
In 2D:

>>> al=1; a2 =1;

Forward Kinematics as a Chain of Robot Links
A robot can be described as a sequence of links which are attached

to joints.
In 2D:

>>> al=1; a2 =1;

>>> linkl = Link2(ET2.R(), name="link1")

Forward Kinematics as a Chain of Robot Links
A robot can be described as a sequence of links which are attached

to joints.
In 2D:

>>> al=1; a2 =1;

>>> 1ink1
>>> 1ink?2

Link2(ET2.R(), name="linki1")
Link2(ET2.tx(al)*ET2.R(), name="1link2",parent=1link1)

Forward Kinematics as a Chain of Robot Links
A robot can be described as a sequence of links which are attached

to joints.
In 2D:

>>>

>>>
>>>
>>>

al=1;

link1
link2
1link3

a2 =1;

Link2(ET2.R(), name="linki1")
Link2(ET2.tx(al)*ET2.R(), name="1link2",parent=1link1)
Link2(ET2.tx(a2), name="1ink3", parent=1ink2)

Forward Kinematics as a Chain of Robot Links
A robot can be described as a sequence of links which are attached
to joints.
In 2D:

>>>

>>>

>>>

>>>

>>>

al=1;
link1
link?2
1link3

robot

a2 =1;

Link2(ET2.R(), name="linki1")
Link2(ET2.tx(al)*ET2.R(), name="1link2",parent=1link1)
Link2(ET2.tx(a2), name="1ink3", parent=1ink2)

ERobot2([linkl, link2, 1link3], name="my_robot")

Forward Kinematics as a Chain of Robot Links (cont'd)

Pose of the end-effector for a specific configuration of the joint
angles:
>>> robot.fkine(np.deg2rad([30, 40])).printline()

Forward Kinematics as a Chain of Robot Links (cont'd)

Pose of the end-effector for a specific configuration of the joint
angles:

>>> robot.fkine(np.deg2rad([30, 40])).printline()

Plot at this configuration:

robot.plot(np.deg2rad([30, 40]));

Forward Kinematics as a Chain of Robot Links (cont'd)

Pose of the end-effector for a specific configuration of the joint
angles:

>>> robot.fkine(np.deg2rad([30, 40])).printline()

Plot at this configuration:

robot.plot(np.deg2rad([30, 40]));

Animation between an initial and a target configuration:

>>> q = np.array([np.linspace(0, pi, 100), \
np.linspace(0, -2%pi, 100)1);

Forward Kinematics as a Chain of Robot Links (cont'd)

Pose of the end-effector for a specific configuration of the joint
angles:

>>> robot.fkine(np.deg2rad([30, 40])).printline()

Plot at this configuration:

robot.plot(np.deg2rad([30, 40]));

Animation between an initial and a target configuration:

>>> q = np.array([np.linspace(0, pi, 100), \
np.linspace(0, -2%pi, 100)1);

>>> q =q.T; # take the transpose of q

Forward Kinematics as a Chain of Robot Links (cont'd)

Pose of the end-effector for a specific configuration of the joint
angles:

>>> robot.fkine(np.deg2rad([30, 40])).printline()

Plot at this configuration:

robot.plot(np.deg2rad([30, 40]));

Animation between an initial and a target configuration:

>>> q = np.array([np.linspace(0, pi, 100), \
np.linspace(0, -2%pi, 100)1);

>>> q =q.T; # take the transpose of q

>> robot.plot(q)

Forward Kinematics as a Chain of Robot Links - 3D Case

Rotation about z, rotation about y, translation along z by a;,
rotation about y, translation along z by a, rotation about z,
rotation about y, rotation about z.

e = ET.Rz()*ET.Ry O *ET.tz(al)*ET.Ry O *ET.tz(a2) *ET.Rz() \
*ET.Ry O *ET.Rz () *ET.Rx ()

Pre-defined Robot Models in the Python Robotics Toolbox

>>> models.list(type="ETS")

Pre-defined Robot Models in the Python Robotics Toolbox

>>> models.list(type="ETS")

class manufacturer DoF structure
Panda | Franka Emika 7 RRRRRRR
Frankie | Franka Emika, Omron 9 RPRRRRRRR
Puma560 | Unimation 6 RRRRRR
Planar_Y | 6 RRRRRR
GenericSeven | Jesse's Imagination 7 RRRRRRR
XYPanda | Franka Emika 9 PPRRRRRRR

Pre-defined Robot Models in the Python Robotics Toolbox

>>> models.list(type="ETS")

class manufacturer DoF structure
Panda | Franka Emika 7 RRRRRRR
Frankie | Franka Emika, Omron 9 RPRRRRRRR
Puma560 | Unimation 6 RRRRRR
Planar_Y | 6 RRRRRR
GenericSeven | Jesse's Imagination 7 RRRRRRR
XYPanda | Franka Emika 9 PPRRRRRRR

To create an instance of a Puma560 robot:

Pre-defined Robot Models in the Python Robotics Toolbox

>>> models.list(type="ETS")

class manufacturer DoF structure
Panda | Franka Emika 7 RRRRRRR
Frankie | Franka Emika, Omron 9 RPRRRRRRR
Puma560 | Unimation 6 RRRRRR
Planar_Y | 6 RRRRRR
GenericSeven | Jesse's Imagination 7 RRRRRRR
XYPanda | Franka Emika 9 PPRRRRRRR

To create an instance of a Puma560 robot:
>>> pb60 = models.ETS.Puma560()

Pre-defined Robot Models in the Python Robotics Toolbox
(cont'd)

A new configuration can be added:

Pre-defined Robot Models in the Python Robotics Toolbox
(cont'd)

A new configuration can be added:

>>> p560.addconfiguration("my_config", \
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6])

Pre-defined Robot Models in the Python Robotics Toolbox
(cont'd)

A new configuration can be added:

>>> p560.addconfiguration("my_config", \
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6])

and accessed as a dictionary

Pre-defined Robot Models in the Python Robotics Toolbox
(cont'd)

A new configuration can be added:

>>> p560.addconfiguration("my_config", \
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6])

and accessed as a dictionary
>>> pb60.configs["my_config"]

Pre-defined Robot Models in the Python Robotics Toolbox
(cont'd)

A new configuration can be added:

>>> p560.addconfiguration("my_config", \
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6])

and accessed as a dictionary
>>> pb60.configs["my_config"]

The forward kinematics for a configuration can be computed:

Pre-defined Robot Models in the Python Robotics Toolbox
(cont'd)

A new configuration can be added:

>>> p560.addconfiguration("my_config", \
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6])

and accessed as a dictionary
>>> pb60.configs["my_config"]

The forward kinematics for a configuration can be computed:

>>> p560.fkine (p560.qr)

Pre-defined Robot Models in the Python Robotics Toolbox
(cont'd)

A new configuration can be added:

>>> p560.addconfiguration("my_config", \
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6])

and accessed as a dictionary
>>> pb60.configs["my_config"]
The forward kinematics for a configuration can be computed:

>>> pb60.fkine (p560.qr)
print the pose in compact form
>>> pb60.fkine(p560.qr) .printline()

Pre-defined Robot Models in the Python Robotics Toolbox
(cont'd)

A new configuration can be added:

>>> p560.addconfiguration("my_config", \
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6])

and accessed as a dictionary
>>> pb60.configs["my_config"]
The forward kinematics for a configuration can be computed:

>>> pb60.fkine (p560.qr)
print the pose in compact form
>>> pb60.fkine(p560.qr) .printline()

plotted in a configuration:

Pre-defined Robot Models in the Python Robotics Toolbox
(cont'd)

A new configuration can be added:

>>> p560.addconfiguration("my_config", \
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6])

and accessed as a dictionary
>>> pb60.configs["my_config"]

The forward kinematics for a configuration can be computed:

>>> pb60.fkine (p560.qr)

print the pose in compact form
>>> pb60.fkine(p560.qr) .printline()
plotted in a configuration:

>>> p560.plot(p560.9r)

Motion in 3D

Previously covered: If the joints move at specific velocities, what is
the velocity of the end-effector? (2D case)

» Rate of change of position: Speed (velocity): v = (x,y, z)

Motion in 3D

Previously covered: If the joints move at specific velocities, what is
the velocity of the end-effector? (2D case)

» Rate of change of position: Speed (velocity): v = (x,y, z)
» Rate of change of orientation: Angular velocity:
w = (wwiyawz) = (qX7 Ay, qz)

Motion in 3D

Previously covered: If the joints move at specific velocities, what is
the velocity of the end-effector? (2D case)
» Rate of change of position: Speed (velocity): v = (x,y, z)
» Rate of change of orientation: Angular velocity:
w = (wx, Wy, wz) = (Gx; Gy, G2)
All of these are with reference to a specific coordinate frame (or
simply the reference coordinate frame).

Translational and Rotational Motion of a Robot's
End-Effector

W
A

e

Translational and Rotational Motion of a Robot’s
End-Effector

The spatial velocity (twist) consists of:

Translational and Rotational Motion of a Robot’s
End-Effector

The spatial velocity (twist) consists of:

VvV = (VX7 Vy, V27wwiy7w2)

Previously - End-Effector Velocity in a 2-Joint Robot (2D)

53

(x > _ (ajcos(q1) + axcos(q1 + q2))

y aisin(q1) + a2sin(q1 + q2)

Previously - End-Effector Velocity in a 2-Joint Robot (2D)

< X > _ (ajcos(q1) + axcos(q1 + q2))

y aisin(q1) + axsin(q1 + q2)

» If joint angles change over time (the robot moves):

g =qui(t), ¢ =qt)

Previously - End-Effector Velocity in a 2-Joint Robot (2D)

® 93

< X > _ (ajcos(q1) + axcos(q1 + q2))

y aisin(q1) + axsin(q1 + q2)

» If joint angles change over time (the robot moves):

g = qi(t), q2=q2(t)

» The velocity of the end-effector can be calculated by
computing the derivative (using the chain rule):

x = —aiqisin(ql) — a2(qg1 + G2)sin(ql + q2)
y = a1qicos(q1) + a2(dq1 + g2)cos(ql + q2)

Previously - End-Effector Velocity in a 2-Joint Robot (2D)

(X) _ < —aysin(ql) — azsin(ql + q2) — azsin(ql + q2)) < g1)

y aycos(q1) + azcos(ql + g2)azcos(ql + q2) Go

Previously - End-Effector Velocity in a 2-Joint Robot (2D)

(X > _ < —aysin(ql) — azsin(ql + q2) — azsin(ql + q2)) < g1)

y aycos(q1) + azcos(ql + g2)azcos(ql + q2) Go

The Jacobian J(q):

v=J(q)q

Jacobian Calculation in the Python Robotics Toolbox

>>> import sympy

Jacobian Calculation in the Python Robotics Toolbox

>>> import sympy

>>> al, a2 = sympy.symbols("al, a2")

Jacobian Calculation in the Python Robotics Toolbox

>>> import sympy
>>> al, a2 = sympy.symbols("al, a2")

>>> e = ERobot2(ET2.R(O*ET2.tx(al)*ET2.R()*ET2.tx(a2))

Jacobian Calculation in the Python Robotics Toolbox

>>> import sympy

>>> al, a2 = sympy.symbols("al, a2")

>>> e

ERobot2(ET2.R()*ET2.tx(al)*ET2.R()*ET2.tx(a2))

>>> q

symbols("q:2") # sympy is already tmported

Jacobian Calculation in the Python Robotics Toolbox

>>> import sympy

>>> al, a2 = sympy.symbols("al, a2")

>>> e

ERobot2(ET2.R()*ET2.tx(al)*ET2.R() *ET2.tx(a2))

>>> q = symbols("q:2") # sympy is already imported
The forward kinematics are calculated as:

>>> TE = e.fkine(q)

Jacobian Calculation in the Python Robotics Toolbox

>>> import sympy

>>> al, a2 = sympy.symbols("al, a2")

>>> e ERobot2(ET2.R()*ET2.tx(al) *ET2.R()*ET2.tx(a2))

>>> q = symbols("q:2") # sympy is already imported
The forward kinematics are calculated as:
>>> TE = e.fkine(q)

Translation part, i.e location of end-effector p = (x, y) :

Jacobian Calculation in the Python Robotics Toolbox

>>> import sympy

>>> al, a2 = sympy.symbols("al, a2")

>>> e ERobot2(ET2.R()*ET2.tx(al) *ET2.R()*ET2.tx(a2))

>>> q = symbols("q:2") # sympy is already imported
The forward kinematics are calculated as:

>>> TE = e.fkine(q)

Translation part, i.e location of end-effector p = (x, y) :

>>> p = TE.t

Jacobian Calculation in the Python Robotics Toolbox

>>> import sympy

>>> al, a2 = sympy.symbols("al, a2")

>>> e ERobot2(ET2.R()*ET2.tx(al) *ET2.R()*ET2.tx(a2))

>>> q = symbols("q:2") # sympy is already imported
The forward kinematics are calculated as:

>>> TE = e.fkine(q)

Translation part, i.e location of end-effector p = (x, y) :
>>> p = TE.t

The Jacobian is calculated:

Jacobian Calculation in the Python Robotics Toolbox

>>> import sympy

>>> al, a2 = sympy.symbols("al, a2")

>>> e ERobot2(ET2.R()*ET2.tx(al) *ET2.R()*ET2.tx(a2))

>>> q = symbols("q:2") # sympy is already imported
The forward kinematics are calculated as:

>>> TE = e.fkine(q)

Translation part, i.e location of end-effector p = (x, y) :
>>> p = TE.t

The Jacobian is calculated:

>>> J = Matrix(p).jacobian(q)

Jacobian Calculation in the Python Robotics Toolbox

>>> import sympy

>>> al, a2 = sympy.symbols("al, a2")

>>> e ERobot2(ET2.R()*ET2.tx(al) *ET2.R()*ET2.tx(a2))

>>> q = symbols("q:2") # sympy is already imported
The forward kinematics are calculated as:

>>> TE = e.fkine(q)

Translation part, i.e location of end-effector p = (x, y) :
>>> p = TE.t

The Jacobian is calculated:

>>> J = Matrix(p).jacobian(q)

The velocity of the end-effector is calculated as:

p=J(a)q (2)

General Form of the Forward Kinematics using the
Jacobian

The derivative of the spatial velocity v of the end-effector can be
written as:

v= =J(9)q

where J(q) is an M x N matrix.

» M =6 is the dimension of the task space (3 translational and
3 rotational velocity components)

» N is the number of robot joints

Calculating the Jacobian of Robots in the Python Robotics
Toolbox

Call the jacobO method on any robot object in the toolbox.

Calculating the Jacobian of Robots in the Python Robotics
Toolbox

Call the jacobO method on any robot object in the toolbox.
>>> p560 = models.ETS.Puma560()

Calculating the Jacobian of Robots in the Python Robotics
Toolbox

Call the jacobO method on any robot object in the toolbox.
>>> p560 = models.ETS.Puma560()

>>> pb560.jacob0(p560.qr) # Jacobian for the gr configuration

Calculating the Jacobian of Robots in the Python Robotics
Toolbox

Call the jacobO method on any robot object in the toolbox.
>>> p560 = models.ETS.Puma560()

>>> pb560.jacob0(p560.qr) # Jacobian for the gr configuration

Calculating the Jacobian of Robots in the Python Robotics
Toolbox

Call the jacobO method on any robot object in the toolbox.
>>> p560 = models.ETS.Puma560()

>>> pb560.jacob0(p560.qr) # Jacobian for the gr configuration

» One column per joint.

Calculating the Jacobian of Robots in the Python Robotics
Toolbox

Call the jacobO method on any robot object in the toolbox.
>>> p560 = models.ETS.Puma560()
>>> pb560.jacob0(p560.qr) # Jacobian for the gr configuration

» One column per joint.
>>> p560.teach(p560.qr)

Velocity of a n-joint Robot Arm

Previous approach does not scale well for more joints. Even for a
6-joint robot it will take too much to do the calculations.

Velocity of a n-joint Robot Arm

Previous approach does not scale well for more joints. Even for a
6-joint robot it will take too much to do the calculations.
How to do this then?

P Relationship between a change of a single joint and the
change in the end-effector.

Simple Numerical Calculation of Derivatives

In a numerical simulation, if we take small enough time steps, the
derivative can be calculated as:

f(xer1) — F(xt)
e A (3)

Simple Numerical Calculation of Derivatives

In a numerical simulation, if we take small enough time steps, the
derivative can be calculated as:

f(xev1) — Fxe)
A (3)
Forward kinematics:

» An approximation of the forward kinematics changes as a
function of changes of a single joint angle.

Simple Numerical Calculation of Derivatives

In a numerical simulation, if we take small enough time steps, the
derivative can be calculated as:

f(xer1) — f(xe)

A (3)

Forward kinematics:
» An approximation of the forward kinematics changes as a
function of changes of a single joint angle.
» The mathematical description of this can be a bit difficult,
therefore it will be skipped.

Simple Numerical Calculation of Derivatives

In a numerical simulation, if we take small enough time steps, the
derivative can be calculated as:

f(xer1) — f(xe)

A (3)

Forward kinematics:

» An approximation of the forward kinematics changes as a
function of changes of a single joint angle.

» The mathematical description of this can be a bit difficult,
therefore it will be skipped.

» One way to think about this, is that the total spatial velocity
is the sum of the individual components due to a change in
each angle (g1, i.e column 1 of the Jacobian, ¢z, i.e column 2
of the Jacobian, etc).

Simple Numerical Calculation of Derivatives

In a numerical simulation, if we take small enough time steps, the
derivative can be calculated as:

f(xer1) — F(xt)
e A (3)

Forward kinematics:

» An approximation of the forward kinematics changes as a
function of changes of a single joint angle.

» The mathematical description of this can be a bit difficult,
therefore it will be skipped.

» One way to think about this, is that the total spatial velocity
is the sum of the individual components due to a change in
each angle (g1, i.e column 1 of the Jacobian, gy, i.e column 2
of the Jacobian, etc).

> Use the jacobO method of the toolbox instead.

How to achieve a Specific End-Effector Spatial Velocity

What velocities the joints should have in order to achieve a specific
end-effector spatial velocity?

How to achieve a Specific End-Effector Spatial Velocity

What velocities the joints should have in order to achieve a specific
end-effector spatial velocity?
Forward kinematics:

v=J(q)q

How to achieve a Specific End-Effector Spatial Velocity

What velocities the joints should have in order to achieve a specific
end-effector spatial velocity?
Forward kinematics:

v=J(q)q

Inverting the Jacobian:

g=J(q) v

How to achieve a Specific End-Effector Spatial Velocity

What velocities the joints should have in order to achieve a specific
end-effector spatial velocity?
Forward kinematics:

v=J(q)q
Inverting the Jacobian:
g=J(q) v

For a 6-joint robot, J(q) is a 6 x 6 matrix, therefore its inverse
can be calculated.

How to achieve a Specific End-Effector Spatial Velocity

What velocities the joints should have in order to achieve a specific
end-effector spatial velocity?
Forward kinematics:

v=J(q)q

Inverting the Jacobian:

g=J(q) v
For a 6-joint robot, J(q) is a 6 x 6 matrix, therefore its inverse
can be calculated.

» Unless the matrix is singular (the determinant is zero), in
which case the inverse cannot be calculated!

Example: Inverting the Jacobian matrix for a Pumab60
Robot

>>> p560 = models.ETS.Puma560 ()

Example: Inverting the Jacobian matrix for a Pumab60
Robot

>>> p560 = models.ETS.Puma560 ()

>>> J = p560. jacob0(p560.qr)

Example: Inverting the Jacobian matrix for a Pumab60
Robot

>>> p560 = models.ETS.Puma560 ()
>>> J = p560. jacob0(p560.qr)

>>> np.linalg.det(J)

Example: Inverting the Jacobian matrix for a Pumab60
Robot

>>> p560 = models.ETS.Puma560 ()
>>> J = p560. jacob0(p560.qr)
>>> np.linalg.det(J)

>>> J = pb60.jacob0(p560.qz)

Example: Inverting the Jacobian matrix for a Pumab60
Robot

>>> p560 = models.ETS.Puma560()
>>> J = p560. jacob0(p560.qr)
>>> np.linalg.det(J)

>>> J = pb60.jacob0(p560.qz)

add a new configuration

>>> pb60.addconfiguration("qn", [0, math.pi/4, math.pi, \
0, math.pi/4, 0])

Example: Inverting the Jacobian matrix for a Pumab60
Robot

>>> pb60 = models.ETS.Puma560()

>>> J = p560.jacob0(p560.qr)

>>> np.linalg.det(J)

>>> J = pb60.jacob0(p560.qz)

add a new configuration

>>> pb60.addconfiguration("qn", [0, math.pi/4, math.pi, \

0, math.pi/4, 0])

>>> J = pb60.jacob0(p560.configs["qn"])

Example: Inverting the Jacobian matrix for a Pumab60
Robot

>>> pb60 = models.ETS.Puma560()

>>> J = p560.jacob0(p560.qr)

>>> np.linalg.det(J)

>>> J = pb60.jacob0(p560.qz)

add a new configuration

>>> pb60.addconfiguration("qn", [0, math.pi/4, math.pi, \
0, math.pi/4, 0])

>>> J = pb60.jacob0(p560.configs["qn"])

>>> np.linalg.det(J)

Example: Inverting the Jacobian matrix for a Pumab60
Robot

>>> pb60 = models.ETS.Puma560()

>>> J = p560.jacob0(p560.qr)

>>> np.linalg.det(J)

>>> J = pb60.jacob0(p560.qz)

add a new configuration

>>> pb60.addconfiguration("qn", [0, math.pi/4, math.pi, \
0, math.pi/4, 0])

>>> J = pb60.jacob0(p560.configs["qn"])

>>> np.linalg.det(J)

>>> np.linalg.inv(J)

How to Control the Spatial Velocity of an End-Effector?

1. Choose the spatial velocity v = (v, vy, vz, Wy, Wy, wy)

2. Calculate the required joint velocities:
g=J(g) v

3. Move the joints at that speed using the actuators (control
motors)

How to Control the Spatial Velocity of an End-Effector?

1. Choose the spatial velocity v = (v, vy, vz, Wy, Wy, wy)

2. Calculate the required joint velocities:
g=J(g) v

3. Move the joints at that speed using the actuators (control
motors)

4. But after a short time, the angle g have changed, therefore
the above calculation is not valid any more!

How to Control the Spatial Velocity of an End-Effector?

1. Choose the spatial velocity v = (v, vy, vz, Wy, Wy, wy)

2. Calculate the required joint velocities:
g=J(g) v

3. Move the joints at that speed using the actuators (control
motors)

4. But after a short time, the angle g have changed, therefore
the above calculation is not valid any more!

5. The Jacobian J(q) needs to be re-calculated.

How to Write a Program to Control the Spatial Velocity of
the End-Effector

» Choose the spatial velocity v = (v, vy, vz, Wy, Wy, w;)
Repeat for ever:

1. Calculate the required joint velocities:

G=J(q) v

2. Move the joints at that speed using the actuators (control
motors)

How to Write a Program to Control the Spatial Velocity of
the End-Effector

» Choose the spatial velocity v = (v, vy, vz, Wy, Wy, w;)
Repeat for ever:

1. Calculate the required joint velocities:

G=J(q) v
2. Move the joints at that speed using the actuators (control
motors)

3. Compute next joint angles: qx11 = qx + Atq
4. k=k+1

Under-Actuated and Over-Actuated Robots

Under-actuated Robots:
> A robot with N < 6 joints is under-actuated.

Under-Actuated and Over-Actuated Robots

Under-actuated Robots:
> A robot with N < 6 joints is under-actuated.

» The Jacobian is not a square matrix therefore it cannot be
inverted.

Under-Actuated and Over-Actuated Robots

Under-actuated Robots:
> A robot with N < 6 joints is under-actuated.

» The Jacobian is not a square matrix therefore it cannot be
inverted.

» Remove from the spatial velocity components, the ones which
cannot be controlled and invert the Jacobian.

Under-Actuated and Over-Actuated Robots

Under-actuated Robots:
> A robot with N < 6 joints is under-actuated.

» The Jacobian is not a square matrix therefore it cannot be
inverted.

> Remove from the spatial velocity components, the ones which
cannot be controlled and invert the Jacobian.

Over-actuated Robots:

» A robot with N > 6 joints is under-actuated (spare joints).

Under-Actuated and Over-Actuated Robots

Under-actuated Robots:
> A robot with N < 6 joints is under-actuated.

» The Jacobian is not a square matrix therefore it cannot be
inverted.

> Remove from the spatial velocity components, the ones which
cannot be controlled and invert the Jacobian.
Over-actuated Robots:
» A robot with N > 6 joints is under-actuated (spare joints).

> The Jacobian is not a square matrix therefore it cannot be
inverted.

Under-Actuated and Over-Actuated Robots

Under-actuated Robots:
> A robot with N < 6 joints is under-actuated.

» The Jacobian is not a square matrix therefore it cannot be
inverted.

> Remove from the spatial velocity components, the ones which
cannot be controlled and invert the Jacobian.

Over-actuated Robots:

» A robot with N > 6 joints is under-actuated (spare joints).

> The Jacobian is not a square matrix therefore it cannot be
inverted.

» A matrix called pseudo-inverse can be computed ¢ = J(q)"v.

Under-Actuated and Over-Actuated Robots

Under-actuated Robots:
> A robot with N < 6 joints is under-actuated.

» The Jacobian is not a square matrix therefore it cannot be
inverted.

> Remove from the spatial velocity components, the ones which
cannot be controlled and invert the Jacobian.

Over-actuated Robots:

» A robot with N > 6 joints is under-actuated (spare joints).

> The Jacobian is not a square matrix therefore it cannot be
inverted.

» A matrix called pseudo-inverse can be computed ¢ = J(q)"v.

J-‘r — (JTJ)—IJT

