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6ELEN018W - Applied Robotics
Lecture 3: Robot Motion - 2D Velocity

Kinematics

Dr Dimitris C. Dracopoulos
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Previously - Homogeneous Transformations Matrices

2D case:

 Ax

Ay

1

 =

 cos(θ) −sin(θ) tx
sin(θ) cos(θ) ty
0 0 1

 Bx
By
1

 (1)



Dimitris C. Dracopoulos 3/23

Pose of the End-Effector - 1-Joint 2D Robot Arm

E = R(q1) · Tx(a1)

E =

 cos(q1) −sin(q1) 0
sin(q1) cos(q1) 0

0 0 1

 1 0 a1
0 1 0
0 0 1


=

 cos(q1) −sin(q1) a1cos(q1)
sin(q1) cos(q1) a1sin(q1)

0 0 1
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Pose of the End-Effector - 1-Joint 2D Robot Arm (cont’d)

In Python Robotics Toolbox:

>>> from sympy import *

>>> q1 = Symbol('q1')

>>> trot2(q1)

>>> a1=Symbol('a1')

>>> transl2(a1,0)

>>> E = trot2(q1) @ transl2(a1, 0)

or equivalently as a ETS2 object:

>>> e = ET2.R()*ET2.tx(a1)

>> e.plot(0) # plot the ETS2 object with q1 = 0 degrees

>> e.plot(math.pi/4) # plot the ETS2 object with q1 = 45 degrees
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Pose of the End-Effector - 2-Joint 2D Robot Arm

E = R(q1) · Tx(a1) · R(q2) · Tx(a2)

E =

 cos(q1 + q2)) −sin(q1 + q2) a1cos(q1) + a2cos(q1 + q2)
sin(q1 + q2) cos(q1 + q2) a1sin(q1) + a2sin(q1 + q2)

0 0 1
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Pose of the End-Effector - 2-Joint 2D Robot Arm (cont’d)
In Python Robotics Toolbox:

>>> from sympy import *

>>> q1 = Symbol('q1')

>>> trot2(q1)

>>> a1=Symbol('a1')

>>> transl2(a1,0)

>>> q2 = Symbol('q2')

>>> a2 = Symbol('a2')

>>> E = trot2(q1) @ transl2(a1, 0) @ trot2(q2) @ transl2(a2, 0)

E = simplify(E)
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Pose of the End-Effector - 2-Joint 2D Robot Arm (cont’d)
The configuration for a pose of the end-effector of the 2-joint
robot arm is not unique:
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Pose of the End-Effector - 3-Joint 2D Robot Arm

E = R(q1) · Tx(a1) · R(q2) · Tx(a2) · R(q3) · T (a3)
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Pose of the End-Effector - 3-Joint 2D Robot Arm (cont’d)
In Python Robotics Toolbox:

>>> from sympy import *

>>> q1 = Symbol('q1')

>>> trot2(q1)

>>> a1=Symbol('a1')

>>> transl2(a1,0)

>>> q2 = Symbol('q2')

>>> a2 = Symbol('a2')

>>> q3 = Symbol('q3')

>>> a3 = Symbol('a3')

>>> E = trot2(q1)@transl2(a1, 0)@trot2(q2)@transl2(a2, 0) \

@ trot2(q3) @ transl2(a3, 0)

E = simplify(E)
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Pose of the End-Effector - 3-Joint 2D Robot Arm (cont’d)

▶ Unlike the 1 and 2-joint robot arms, the 3-joint robot arm has
3 degrees of freedom and therefore it can achieve different
orientations.

The x coordinate of the end-effector is given by:

>>> E[0, 2] #first row, third column

The y coordinate of the end-effector is given by:

>>> E[1, 2] #second row, third column

The orientation of the end-effector is given by: q1 + q2 + q3
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The Problem of Forward Kinematics

The calculation of the position and orientation of a robot’s
end-effector from its joint coordinates θi .

▶ In the previous slides it has been shown how to do this in 2D
spaces for:
▶ 1-joint robot arms
▶ 2-joint robot arms
▶ 3-joint robot arms

using simple transformations in Mathematics which correspond to
real operations in Physics!
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Velocity of the End-Effector

The Problem:

▶ If the joints move at specific velocities, what is the velocity of
the end-effector?

Extremely important to control the operation of the end-effector
(hand) of robots!

Calculation needed: Given the q̇ (time rate of change of joints
angles) calculate the time rate of change of the pose of the
end-effector ξ̇E .

▶ q̇ is the derivative of q
▶ ξ̇E is the derivative of the pose (position and orientation) ξE

of the end-effector
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What is a Derivative?

The derivative of a function measures the sensitivity of changes to
the output (value) of the function, based on changes of the input
(independent variable) of the function.

▶ The slope of the tangent line is equal to the derivative.

−→ It is also used to show the direction we need to follow and the
magnitude of the step we need to take, in order to reduce an error
(machine learning, etc).
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Simple Numerical Calculation of Derivatives

In a numerical simulation, if we take small enough time steps, the
derivative can be calculated as:

f (xt+1)− f (xt)

∆t
(2)

where

▶ f (xt+1) is the value of function f at time t + 1

▶ f (xt) is the value of function f at time t

▶ ∆t is the time step, i.e. the difference (time elapsed) between
the two successive time steps.

When a function f involves more than one independent variables,
e.g. f (x1, x2) the derivative with respect to one of these variables
is called partial derivative and it is denoted as ∂f

∂x1
, ∂f
∂x2

, etc.:
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Velocity of End-Effector in a 2-Joint Robot Arm (2D)

Relationship of the velocities of individual joints q1 and q2 and the
velocity of the end-effector.

▶ It can be shown that instantaneously the velocity of the
end-effector is the sum of the end effector velocity components
due to motion of joint 1 and the motion due to joint 2 .
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Velocity of End-Effector in a 2-Joint Robot Arm (2D) -
cont’d

The position of the end-effector is given (see previous slides) by:(
x
y

)
=

(
a1cos(q1) + a2cos(q1 + q2)
a1sin(q1) + a2sin(q1 + q2)

)
(3)

▶ If joint angles change over time (the robot moves):

q1 = q1(t), q2 = q2(t)

▶ The velocity of the end-effector can be calculated by
computing the derivative (using the chain rule):

ẋ = −a1q̇1sin(q1)− a2(q̇1 + q̇2)sin(q1 + q2) (4)

ẏ = a1q̇1cos(q1) + a2(q̇1 + q̇2)cos(q1 + q2) (5)

where q̇1 =
∂q1
∂t , q̇2 =

∂q2
∂t
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Velocity of End-Effector in a 2-Joint Robot Arm (2D) -
cont’d

Equations (4), (5):

ẋ = −a1q̇1sin(q1)− a2(q̇1 + q̇2)sin(q1 + q2) (6)

ẏ = a1q̇1cos(q1) + a2(q̇1 + q̇2)cos(q1 + q2) (7)

can be written in matrix form:

(
ẋ
ẏ

)
=

(
−a1sin(q1)− a2sin(q1 + q2) −a2sin(q1 + q2)
a1cos(q1) + a2cos(q1 + q2) a2cos(q1 + q2)

)(
q̇1
q̇2

)
or

v = J(q)q̇ (8)
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Velocity of End-Effector in a 2-Joint Robot Arm (2D) -
cont’d

J(q) is the Jacobian matrix of the joint angles q1 and q2:

J(q) =
(

−a1sin(q1)− a2sin(q1 + q2) −a2sin(q1 + q2)
a1cos(q1) + a2cos(q1 + q2) a2cos(q1 + q2)

)
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More on Jacobian

For a scalar value x and a scalar function f :

y = f (x)

the derivative of f is:
df

dx
=

dy

dx

The Jacobian is the equivalent for the derivative of a matrix:

▶ the derivative of a function which has a vector as an argument
and returns a vector as its result:

J =
∂F
∂x

=


∂y1
∂x1

· · · ∂y1
∂xn

... · · ·
...

∂ym
∂x1

· · · ∂ym
∂xn
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The Chain Rule for Calculating Derivatives
The chain rule is used to differentiate a function which has an
argument another function (i.e. a composite function).
▶ Assuming a function: y = f (g(x))

The chain rule states that the derivative of y with respect to x , i.e.
dy
dx can be calculated as follows:

1. Substitute u = g(x). Then:

y = f (u)

2. Chain rule:
dy

dx
=

dy

du
· du
dx

(9)

Example:
Differentiate y = sinx2:

1. u = x2 then:

2. y = sin(u)

3.
dy

dx
=

dy

du
· du
dx

= cos(u) · 2x = cos(x2) · 2x (10)
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Calculating the Joint Velocities for a Desired End-Effector
Velocity

In real world, we need to specify a velocity for the end-effector.

▶ How do I achieve this, what velocities do I need to apply to
the joints of the robot using my actuators (control motors in
the joints)?

From Equation (8):
v = J(q)q̇ (11)

Multiplying both sides of the equation from the left by the inverse
of the Jacobian matrix:

q̇ = J(q)−1 · v (12)
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Calculating the Derivatives using SymPy
>>> x, y = symbols('x y')

>>> f = x**2

>>> f.subs(x, 3) # substitute (evaluate f at x for x = 3

Converting a string a SymPy expression:

>>> s = 'x**3 + 2*x + 5'

>>> e = sympify(s)

>>> print(e)

>>> e.subs(x, 4) # evaluate for x=4

Differentiation:

>>> diff(f, x)

>>> diff(e, x)

>>> diff(e, y)

>>> diff('y**2', y)
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Calculating the Derivative of an Expression which includes
an unknown Function using SymPy

>>> x = Symbol('x')

>>> f = Function('f')

# function g which includes the unknown function f

>>> g = x**2 + x*f(x)

>>> diff(g, x)

The output is:

x
d

dx
f (x) + f (x) + 2 · x


