
Dimitris C. Dracopoulos 1/23

6ELEN018W - Applied Robotics
Lecture 3: Robot Motion - 2D Velocity

Kinematics

Dr Dimitris C. Dracopoulos

Dimitris C. Dracopoulos 2/23

Previously - Homogeneous Transformations Matrices

2D case:

 Ax

Ay

1

 =

 cos(θ) −sin(θ) tx
sin(θ) cos(θ) ty
0 0 1

 Bx
By
1

 (1)

Dimitris C. Dracopoulos 3/23

Pose of the End-Effector - 1-Joint 2D Robot Arm

E = R(q1) · Tx(a1)

E =

 cos(q1) −sin(q1) 0
sin(q1) cos(q1) 0

0 0 1

 1 0 a1
0 1 0
0 0 1

=

 cos(q1) −sin(q1) a1cos(q1)
sin(q1) cos(q1) a1sin(q1)

0 0 1

Dimitris C. Dracopoulos 4/23

Pose of the End-Effector - 1-Joint 2D Robot Arm (cont’d)

In Python Robotics Toolbox:

>>> from sympy import *

>>> q1 = Symbol('q1')

>>> trot2(q1)

>>> a1=Symbol('a1')

>>> transl2(a1,0)

>>> E = trot2(q1) @ transl2(a1, 0)

or equivalently as a ETS2 object:

>>> e = ET2.R()*ET2.tx(a1)

>> e.plot(0) # plot the ETS2 object with q1 = 0 degrees

>> e.plot(math.pi/4) # plot the ETS2 object with q1 = 45 degrees

Dimitris C. Dracopoulos 5/23

Pose of the End-Effector - 2-Joint 2D Robot Arm

E = R(q1) · Tx(a1) · R(q2) · Tx(a2)

E =

 cos(q1 + q2)) −sin(q1 + q2) a1cos(q1) + a2cos(q1 + q2)
sin(q1 + q2) cos(q1 + q2) a1sin(q1) + a2sin(q1 + q2)

0 0 1

Dimitris C. Dracopoulos 6/23

Pose of the End-Effector - 2-Joint 2D Robot Arm (cont’d)
In Python Robotics Toolbox:

>>> from sympy import *

>>> q1 = Symbol('q1')

>>> trot2(q1)

>>> a1=Symbol('a1')

>>> transl2(a1,0)

>>> q2 = Symbol('q2')

>>> a2 = Symbol('a2')

>>> E = trot2(q1) @ transl2(a1, 0) @ trot2(q2) @ transl2(a2, 0)

E = simplify(E)

Dimitris C. Dracopoulos 7/23

Pose of the End-Effector - 2-Joint 2D Robot Arm (cont’d)
The configuration for a pose of the end-effector of the 2-joint
robot arm is not unique:

Dimitris C. Dracopoulos 8/23

Pose of the End-Effector - 3-Joint 2D Robot Arm

E = R(q1) · Tx(a1) · R(q2) · Tx(a2) · R(q3) · T (a3)

Dimitris C. Dracopoulos 9/23

Pose of the End-Effector - 3-Joint 2D Robot Arm (cont’d)
In Python Robotics Toolbox:

>>> from sympy import *

>>> q1 = Symbol('q1')

>>> trot2(q1)

>>> a1=Symbol('a1')

>>> transl2(a1,0)

>>> q2 = Symbol('q2')

>>> a2 = Symbol('a2')

>>> q3 = Symbol('q3')

>>> a3 = Symbol('a3')

>>> E = trot2(q1)@transl2(a1, 0)@trot2(q2)@transl2(a2, 0) \

@ trot2(q3) @ transl2(a3, 0)

E = simplify(E)

Dimitris C. Dracopoulos 10/23

Pose of the End-Effector - 3-Joint 2D Robot Arm (cont’d)

▶ Unlike the 1 and 2-joint robot arms, the 3-joint robot arm has
3 degrees of freedom and therefore it can achieve different
orientations.

The x coordinate of the end-effector is given by:

>>> E[0, 2] #first row, third column

The y coordinate of the end-effector is given by:

>>> E[1, 2] #second row, third column

The orientation of the end-effector is given by: q1 + q2 + q3

Dimitris C. Dracopoulos 11/23

The Problem of Forward Kinematics

The calculation of the position and orientation of a robot’s
end-effector from its joint coordinates θi .

▶ In the previous slides it has been shown how to do this in 2D
spaces for:
▶ 1-joint robot arms
▶ 2-joint robot arms
▶ 3-joint robot arms

using simple transformations in Mathematics which correspond to
real operations in Physics!

Dimitris C. Dracopoulos 12/23

Velocity of the End-Effector

The Problem:

▶ If the joints move at specific velocities, what is the velocity of
the end-effector?

Extremely important to control the operation of the end-effector
(hand) of robots!

Calculation needed: Given the q̇ (time rate of change of joints
angles) calculate the time rate of change of the pose of the
end-effector ξ̇E .

▶ q̇ is the derivative of q
▶ ξ̇E is the derivative of the pose (position and orientation) ξE

of the end-effector

Dimitris C. Dracopoulos 13/23

What is a Derivative?

The derivative of a function measures the sensitivity of changes to
the output (value) of the function, based on changes of the input
(independent variable) of the function.

▶ The slope of the tangent line is equal to the derivative.

−→ It is also used to show the direction we need to follow and the
magnitude of the step we need to take, in order to reduce an error
(machine learning, etc).

Dimitris C. Dracopoulos 14/23

Simple Numerical Calculation of Derivatives

In a numerical simulation, if we take small enough time steps, the
derivative can be calculated as:

f (xt+1)− f (xt)

∆t
(2)

where

▶ f (xt+1) is the value of function f at time t + 1

▶ f (xt) is the value of function f at time t

▶ ∆t is the time step, i.e. the difference (time elapsed) between
the two successive time steps.

When a function f involves more than one independent variables,
e.g. f (x1, x2) the derivative with respect to one of these variables
is called partial derivative and it is denoted as ∂f

∂x1
, ∂f
∂x2

, etc.:

Dimitris C. Dracopoulos 15/23

Velocity of End-Effector in a 2-Joint Robot Arm (2D)

Relationship of the velocities of individual joints q1 and q2 and the
velocity of the end-effector.

▶ It can be shown that instantaneously the velocity of the
end-effector is the sum of the end effector velocity components
due to motion of joint 1 and the motion due to joint 2 .

Dimitris C. Dracopoulos 16/23

Velocity of End-Effector in a 2-Joint Robot Arm (2D) -
cont’d

The position of the end-effector is given (see previous slides) by:(
x
y

)
=

(
a1cos(q1) + a2cos(q1 + q2)
a1sin(q1) + a2sin(q1 + q2)

)
(3)

▶ If joint angles change over time (the robot moves):

q1 = q1(t), q2 = q2(t)

▶ The velocity of the end-effector can be calculated by
computing the derivative (using the chain rule):

ẋ = −a1q̇1sin(q1)− a2(q̇1 + q̇2)sin(q1 + q2) (4)

ẏ = a1q̇1cos(q1) + a2(q̇1 + q̇2)cos(q1 + q2) (5)

where q̇1 =
∂q1
∂t , q̇2 =

∂q2
∂t

Dimitris C. Dracopoulos 17/23

Velocity of End-Effector in a 2-Joint Robot Arm (2D) -
cont’d

Equations (4), (5):

ẋ = −a1q̇1sin(q1)− a2(q̇1 + q̇2)sin(q1 + q2) (6)

ẏ = a1q̇1cos(q1) + a2(q̇1 + q̇2)cos(q1 + q2) (7)

can be written in matrix form:

(
ẋ
ẏ

)
=

(
−a1sin(q1)− a2sin(q1 + q2) −a2sin(q1 + q2)
a1cos(q1) + a2cos(q1 + q2) a2cos(q1 + q2)

)(
q̇1
q̇2

)
or

v = J(q)q̇ (8)

Dimitris C. Dracopoulos 18/23

Velocity of End-Effector in a 2-Joint Robot Arm (2D) -
cont’d

J(q) is the Jacobian matrix of the joint angles q1 and q2:

J(q) =
(

−a1sin(q1)− a2sin(q1 + q2) −a2sin(q1 + q2)
a1cos(q1) + a2cos(q1 + q2) a2cos(q1 + q2)

)

Dimitris C. Dracopoulos 19/23

More on Jacobian

For a scalar value x and a scalar function f :

y = f (x)

the derivative of f is:
df

dx
=

dy

dx

The Jacobian is the equivalent for the derivative of a matrix:

▶ the derivative of a function which has a vector as an argument
and returns a vector as its result:

J =
∂F
∂x

=

∂y1
∂x1

· · · ∂y1
∂xn

... · · ·
...

∂ym
∂x1

· · · ∂ym
∂xn

Dimitris C. Dracopoulos 20/23

The Chain Rule for Calculating Derivatives
The chain rule is used to differentiate a function which has an
argument another function (i.e. a composite function).
▶ Assuming a function: y = f (g(x))

The chain rule states that the derivative of y with respect to x , i.e.
dy
dx can be calculated as follows:

1. Substitute u = g(x). Then:

y = f (u)

2. Chain rule:
dy

dx
=

dy

du
· du
dx

(9)

Example:
Differentiate y = sinx2:

1. u = x2 then:

2. y = sin(u)

3.
dy

dx
=

dy

du
· du
dx

= cos(u) · 2x = cos(x2) · 2x (10)

Dimitris C. Dracopoulos 21/23

Calculating the Joint Velocities for a Desired End-Effector
Velocity

In real world, we need to specify a velocity for the end-effector.

▶ How do I achieve this, what velocities do I need to apply to
the joints of the robot using my actuators (control motors in
the joints)?

From Equation (8):
v = J(q)q̇ (11)

Multiplying both sides of the equation from the left by the inverse
of the Jacobian matrix:

q̇ = J(q)−1 · v (12)

Dimitris C. Dracopoulos 22/23

Calculating the Derivatives using SymPy
>>> x, y = symbols('x y')

>>> f = x**2

>>> f.subs(x, 3) # substitute (evaluate f at x for x = 3

Converting a string a SymPy expression:

>>> s = 'x**3 + 2*x + 5'

>>> e = sympify(s)

>>> print(e)

>>> e.subs(x, 4) # evaluate for x=4

Differentiation:

>>> diff(f, x)

>>> diff(e, x)

>>> diff(e, y)

>>> diff('y**2', y)

Dimitris C. Dracopoulos 23/23

Calculating the Derivative of an Expression which includes
an unknown Function using SymPy

>>> x = Symbol('x')

>>> f = Function('f')

function g which includes the unknown function f

>>> g = x**2 + x*f(x)

>>> diff(g, x)

The output is:

x
d

dx
f (x) + f (x) + 2 · x

