6ELENO18W - Applied Robotics
Lecture 1: Introduction to the Module and

Python

Dr Dimitris C. Dracopoulos



Introduction to the Module

vVvyvyvVvYVvyyvyy

Syllabus

Lectures

Tutorials (Practicals)
Software

Assessment

Schedule
What is expected from you?
» Lecture Attendance
» Tutorial Attendance (actual not just swiping of card!)
» Completion of ALL Tutorial Exercises within the week (if not
possible within the tutorial session then on your own time).
» Raise Issues Early directly with the Module Leader!
» Code of Conduct



Code of Conduct

» Do not cheat on assignments (this is INDIVIDUAL work and
NOT the product of collaboration!):
» Discuss only general approaches not specific details of
implementation
» Do not take written notes on other’s work and do not
exchange code

» Cheating is reported to university and then it is out of the
module lecturers hands (independent committee decision
without the participation of the module tutors)

» Possible consequences:

» A mark of 0 for assignment
» A mark of 0 for the course
» A permanent note on student record
» Suspension/Expulsion from university



Code of Conduct (cont'd)

» Any code found in the web or textbook and used in your work
should be properly referenced in comments within your code.



Academic Integrity

» The University of Westminster is committed to the highest
standards of academic integrity and honesty. Students are
expected to be familiar with these standards regarding
academic honesty and to uphold the policies of the University
in this respect. Students are particularly urged to familiarise
themselves with the provisions of the Academic Regulations
and in this case with Academic Misconduct Regulations
(https://www.westminster.ac.uk/sites/default/public-
files/general-documents/Section-10-Academic-Misconduct-
v2.pdf) and avoid any behaviour which could potentially
result in suspicions of cheating, plagiarism, misrepresentation
of facts and/or participation in an offence. Academic
dishonesty is a serious offence and can result in suspension or
expulsion from the University.



Topics

This module covers the background knowledge for the dynamics of
robots, related algorithms and practical software skills to implement
a variety of 3D robots and controlling them using Python and
Matlab. The simulations of robots will include virtual worlds.

» Modelling the dynamics of 3D robot mechanisms
» Controlling different types of 3-dimensional robots

» Application of different algorithms related to robotics
including search and path-planning with obstacle avoidance
using simulations of virtual worlds.

P> Exposure to machine learning algorithms related to robotics
and also intelligent control
A very mathematical object but will try to simplify! Cannot do
without maths!



Introduction to Python

Why Python?

» A very popular programming language
» Important for your knowledge and after your graduation

» Robotics toolboxes and other libraries related to robotics
(vision, machine learning, algorithms) are available

» Some hardware provides their manipulation through Python
APIs and libraries



Variables

No declaration of variables but types still exist:
> int
> float
> str
> bool

Example:
x = 5%6 + 1
y = "Hello class"
type (x)
x =77.9



Some useful functions

Built-in mathematical functions:

abs(-32)

min(-3, 1, 0, 500, 10000)

max(-3, 1, 0, 500, 10000)
Extra functions are available in modules which need to be
imported:

import math

math.sqrt(9), math.pi, math.cos(math.pi), math.ceil(1.1)
math.floor(1.8), math.pow(2,3), round(1.2)



Strings

A sequence of characters enclosed in single, double or triple
quotation marks.

sl = 'Python'

s2 = "python"
s3 = '''Python'"'
s4 = """Python

Strings inside triple quotation marks can span multiple lines.

Strings can be concatenated using the + operator (all terms must
be strings):

sl + " is a great " + "language"



Casting

A type can be converted to another type if this is feasible, using

casting:
a = float(5)
b = int(math.pi)

float("5.76")
int ('777")

print(a, b)
print(a, b, sep = '::')

# spectifying the width of the output and
# the number of decimal digits displayed
format (math.pi, '10.3f')



Input

User input can be achieved with the input function which always
returns a string:

>>> x = input('Enter your age: ')

Enter your age: 34

>>> type(x)
<class mstr'>



Conditionals - The if statement

Syntax:

if conditionl:
statements

elif condition2:expression
statements

elif conditionN:
statements
else:
statements

» Unlike other programming languages (which most commonly
use curly brackets), a block of statements in Python is created
using consistent indentation.




Conditionals - The if statement (cont'd)

age = input('Enter your age: ')
age = int(age)
if age >= 18:
print('Its time to work\n')
print('You are old enough')
elif age > 0 and age <=5:
print("Time to sleep...")
else:
print('Do whatever you want')

Logical operators: and, or, not



The while loop

Example:

a=1

b = 10

while a <= b:
a=a+1

print(a)



The for loop

A for loop is used to iterate over a sequence (e.g. list, tuple,
dictionary, set, string).
It is commonly used with the range function which creates a
sequence of integers:
for x in range(10):

print(x)
for x in range(2, 10):

print (x)

The step size can also be specified:

for x in range(2, 10, 2):
print (x)



The for loop

An optional else block can be specified and it will be executed
when the loop terminates (it will not be executed if the loop
finishes because of a break:
for i in range(10000000) :

print (i)
else:

print("At last finished")

The else block can also be specified as part of the while loop.



Accessing Elements in Sequences

s = "Robotics"
s [0] # 'R’
len(s) # 8
s[4] #t

Indices can be negative, which means they will start from the end
of the sequence:

s[-1] # 's’

s[-2] # 'c'
Strings are immutable:

s[0] = 'r' # Error!



The Colon : Operator

It can be used to select parts of a sequence:

s = "Robotics"

s[1:5]

s[2:-1]

s[2:]

s[4:1:-1] # step is -1
s[:5]

s[:]



Objects, Equality and References

s1
s2

"I, robot"
"I, robot"

Two distinct string objects are created in memory.

sl == s2 # True - compare wvalues
sl is s2 # False - compare memory addresses

83 = s2 # s3 and s2 references point to the same object in memo
s3 is s2 # True

s3 is s1 # False

s3 is not sl # True

Checking if a substring is part of a string:

"rob" in sl1 # True



Lists

A list is a sequence of objects ordered from left to right.
m=[2, 1, 5, 10, 7]

k = [61, 'a day in the autumn', 77.23]

Operations with lists:

>>>m + k

[2, 1, 5, 10, 7, 61, 'a day in the autumn', 77.23]
Accessing elements:

m[0]

m[2]

m[-3]

Lists are mutable:

>>> m[2] = 88
>>> m
[2, 1, 88, 10, 7]



Lists (cont'd)

Selecting parts of a list:
m[2:5]

m[5:2:-1]

m[::-1]

m[3:100]

>>> m2 = [55, 'abc', [30, 10, 21]]
>>> len(m2)

3

>>> m2[2]

[30, 10, 21]

>>> m2[2] [1]

10

Deleting elements:

>>> m[2:4] = []
>>> m
2, 1, 71



Functions for Lists

m = [2: 1, 5, 10: 7]
sum(m) # 25
max(m) # 10

L = sorted(m)
L == # False
sorted(m, reverse=True)

Methods available for lists:

dir(1list)
m.sort ()
m.insert(2, 6)



Tuples

Tuples are similar to lists, however they are immutable:
a = (10, 5, 1, 20, 19)

b=1, 4, 2

type (b)

c = (9

type(c)

d = (10,)

type(d)

Operations with tuples create new tuples:
(10, 30, 20) + (5, 6, 1)

Accessing elements in a tuple:

alo0]
al1:3]



lterating over Sequences

mylist = [1, 10, 5, 77, 16]
for i in mylist:
print (i)

mytuple = (99, 88, 1, 5, 100)
for x in mytuple:
print (x)



List Comprehensions

Creating a list from an iterable object:

mylist = [1, 10, 5, 77, 16]
mylist2 = [x + 5 for x in mylist]

A condition can also be specified as part of a list comprehension:
M = [x**2 for x in range(1,10) if x2 == 0]



Dictionaries

Similar to maps in Java, storing pairs of keys and values:

my_contacts = {"James": '0208-3447558', "Jane": '0792-3456345"',
"George": '0203-9511000'}

my_contacts['Jane']

my_contacts['Bob'] = '0207-7776666"

Iterating over dictionaries:

for k in my_contacts.keys(Q):
print (my_contacts[k])

for k in my_contacts:
print (my_contacts[k])

for v in my_contacts.values():
print(v)



Functions

Defining of a function:

def my_calculation(x, y):
result = x**2 + y
return result

Calling a function:

my_calculation(5, 6)

Returning multiple values:

# calculate and return min, max and average
def min_max_avg(data):

a = min(data)

b = max(data)

¢ = sum(data)/len(data)

return a, b, c

mi, ma, avg = min_max_avg([100, 300, 200])



Files

Reading from a text file line by line:

>>> f = open('myfile.txt')
>>> for 1i in f:

print(1i)
>>> f.close()

Assuming a file myfile.txt’:
Line 1 1

Line 2 8
Line 3 27



Files (cont'd)

Writing to a text file:
f2 = open('myfile2.txt', 'w') # open in 'write' mode
for i in range(1,10):

f2.write('Line ' + str(i) + ': ' + str(i**2) + '\n')
f2.close()

File myfile2.txt is created:

Line 1: 1
Line 2: 4
Line 3: 9
Line 4: 16
Line 5: 25
Line 6: 36
Line 7: 49
Line 8: 64
Line 9: 81



