
Dimitris C. Dracopoulos 1/14

6ELEN018W - Applied Robotics
Lecture 10: The Gymnasium RL Environment

Dr Dimitris C. Dracopoulos

Dimitris C. Dracopoulos 2/14

Installing Gymnasium

Execute in a a terminal (inside Anaconda, if you are using
Anaconda):

pip install swig

pip install gymnasium[toy_text]

pip install gymnasium[box2d]

You can follow the link below for more detailed instructions:
https://github.com/Farama-Foundation/Gymnasium

https://github.com/Farama-Foundation/Gymnasium

Dimitris C. Dracopoulos 3/14

The Lunar Lander Problem

A classic rocket trajectory optimization problem.

▶ Decision: Fire engine on or off.

Action Space:

▶ 0: do nothing

▶ 1: fire left orientation engine

▶ 2: fire main engine

▶ 3: fire right orientation engine

Dimitris C. Dracopoulos 4/14

The Lunar Lander Problem (cont’d)

Observation Space:
An 8-dimensional vector:

▶ The coordinates of the lander in x and y

▶ Linear velocities in x and y

▶ Its angle

▶ its angular velocity

▶ 2 booleans that represent whether each leg is in contact with
the ground or not.

Dimitris C. Dracopoulos 5/14

The Lunar Lander Problem (cont’d)
Rewards:
After every step a reward is granted. The total reward of an
episode is the sum of the rewards for all the steps within that
episode.
For each step, the reward:
▶ is increased/decreased the closer/further the lander is to the

landing pad.
▶ is increased/decreased the slower/faster the lander is moving.
▶ is decreased the more the lander is tilted (angle not

horizontal).
▶ is increased by 10 points for each leg that is in contact with

the ground.
▶ is decreased by 0.03 points each frame a side engine is firing.
▶ is decreased by 0.3 points each frame the main engine is firing.

The episode receive an additional reward of -100 or +100 points
for crashing or landing safely respectively.
−→ An episode is considered a solution if it scores at least 200
points.

Dimitris C. Dracopoulos 6/14

The Lunar Lander Problem (cont’d)

Episode Termination:

▶ the lander crashes (the lander body gets in contact with the
moon)

▶ the lander gets outside of the viewport (x coordinate is
greater than 1);

Dimitris C. Dracopoulos 7/14

Example of Robot Agent (Random Policy) for Lunar
Landing

import gymnasium as gym

#env = gym.make("LunarLander-v3", render_mode="human")

env = gym.make("LunarLander-v3", render_mode="rgb_array")

observation, info = env.reset()

total_reward = 0

episode_over = False

while not episode_over:

agent random policy that uses the observation and info

action = env.action_space.sample()

observation, reward, terminated, truncated, info = env.step(action)

print(f"Action: {action} - Observation: {observation}, reward: {reward}")

total_reward += reward

episode_over = terminated or truncated

print(total_reward)

env.close()

Dimitris C. Dracopoulos 8/14

The Taxi Driver Problem

trying to find the optimum path to a passenger location, pick up
the passenger and then travel to a goal location and drop-off the
passenger.

Dimitris C. Dracopoulos 9/14

The Taxi Driver Problem (cont’d)
The discrete environment is a 5x5 maze.

+---------+

|R: | : :G|

| : | : : |

| : : : : |

| | : | : |

|Y| : |B: |

+---------+

▶ There are four designated pick-up and drop-off locations
(Red, Green, Yellow and Blue) in the 5x5 grid world. The taxi
starts off at a random square and the passenger at one of the
designated locations.

▶ The goal for the robot is to drive the taxi to the passenger’s
location, pick up the passenger, move to the passenger’s
desired destination, and drop off the passenger. Once the
passenger is dropped off, the episode ends.

Dimitris C. Dracopoulos 10/14

The Taxi Driver Problem (cont’d)

Action Space:

▶ 0: Move south (down)

▶ 1: Move north (up)

▶ 2: Move east (right)

▶ 3: Move west (left)

▶ 4: Pickup passenger

▶ 5: Drop off passenger

Dimitris C. Dracopoulos 11/14

The Taxi Driver Problem (cont’d)

Rewards at each time step:

▶ -1 per step unless other reward is triggered.

▶ +20 delivering passenger.

▶ -10 executing “pickup” and “drop-off” actions illegally.

▶ An action that results a noop (no operation), like moving into
a wall, will incur the time step penalty.

Episode end:

▶ Termination: 1. The taxi drops off the passenger.

▶ Truncation: The length of the episode is 200.

Dimitris C. Dracopoulos 12/14

The Taxi Driver Problem (cont’d)

Observation is returned as an integer that encodes the
corresponding state, calculated by:

((taxi row ∗ 5+ taxi col) ∗ 5+ passenger location) ∗ 4+ destination

Encoding:
def encode(taxi_row, taxi_col, pass_loc, dest_idx):

possible values for each argument: (5) 5, 5, 4

i = taxi_row

i *= 5

i += taxi_col

i *= 5

i += pass_loc

i *= 4

i += dest_idx

return i

Dimitris C. Dracopoulos 13/14

The Taxi Driver Problem (cont’d)

Observation is returned as an integer that encodes the
corresponding state, calculated by:

((taxi row ∗ 5+ taxi col) ∗ 5+ passenger location) ∗ 4+ destination

Decoding:
def decode(i):

out = []

out.append(i 4)

i = i // 4

out.append(i 5)

i = i // 5

out.append(i % 5)

i = i // 5

out.append(i)

assert 0 <= i < 5

return reversed(out)

Dimitris C. Dracopoulos 14/14

Example of Robot Agent (Random Policy) for the Taxi
Driver Problem

import gymnasium as gym

env = gym.make("Taxi-v3", render_mode="rgb_array")

observation, info = env.reset()

total_reward = 0

episode_over = False

while not episode_over:

robot random policy that uses the observation and info

action = env.action_space.sample()

observation, reward, terminated, truncated, info = env.step(action)

print(f"Action: {action} - Observation: {observation}, reward: {reward}")

total_reward += reward

episode_over = terminated or truncated

print(f'\n--> Total reward: {total_reward}')

env.close()

