
5elen018w_tutorial7_2025_code

December 12, 2024

5ELEN018W - Tutorial 7 2025 Solutions
Exercise 2

[]: import matplotlib.pyplot as plt

Initialisation
v = 0 # current speed initialised to 0
previous_v = 0 # the speed at the previous time step
dt = 0.001 # time step for the simulation

''' Implements the dynamic system (plant) - system input is action u
and the method returns the output of the plant '''

def plant(action_u):
m \dot{v} + b v = u
m=1000, b=50, u = 500
m = 1000.0
b = 50

v_dot = (action_u - b*v)/m

new_speed = v + v_dot*dt
return new_speed

open a file for writing
pw = open('myfile.txt', 'w')

start_time = 0
end_time = 10.0

current_time = start_time

v_ref = 10 # the desired speed

K_p = 800 # proportional gain
K_i = 40 # integral gain

1

K_d = 40 # derivative gain

previous_error = 0
integral = 0

list containing time for the simulation
time = []

list containing speed for the simulation
speed = []

simulate the system operation from the beginning till
the end of the simulation
while current_time <= end_time:

error = v_ref - v

I(ntegral) component of the PID controller
integral = integral + error*dt

D(erivative) component of the PID controller
deriv = (error - previous_error)/dt

the output (action) of the PID controller
action = K_p*error + K_i*integral + K_d*deriv

remember the last error when the previous action
was applied to the plant
previous_error = error

apply the new action to the plant to calculate
the new (current) speed
v = plant(action)

print(f"Time: {current_time} Action: {action}, Speed={v}")
pw.write(f'{v} {current_time}\n')

save v and current_time in the corresponding lists
time.append(current_time)
speed.append(v)

advance the time
current_time += dt

pw.close()

plot speed vs time

2

plt.plot(time, speed)
plt.ylim(0, 10) # set the limits of the range for the y-axis
plt.show() # display the plot

Exercise 3
[]: import matplotlib.pyplot as plt

Initialisation
v = 0 # current speed initialised to 0
x = 0 # initial position is 0

dt = 0.001 # time step for the simulation

''' Implements the dynamic system (plant) - system input is action u
and the method returns the next state of the plant (system),
i.e. (position x, speed v) '''

def plant(action_u):
m \dotdot{x} + b xdot + k x = u
m=1 b=6, k = 9.86960
m = 1
b = 6
k = 9.86960

x_dot = v # xdot is speed
x_dotdot = (action_u - b*x_dot - k*x)/m

v_dot = x_dotdot
new_speed = v + v_dot*dt

new_x = x + new_speed*dt
return new_x, new_speed

open a file for writing
pw = open('myfile_ex3.txt', 'w')

start_time = 0
end_time = 10.0

current_time = start_time

x_ref = 1 # the desired position

K_p = 50 # proportional gain
K_i = 40 # integral gain

3

K_d = 8 # derivative gain

previous_error = 0
integral = 0

list containing time for the simulation
time = []

list containing positions x for the simulation
position = []

simulate the system operation from the beginning till
the end of the simulation
while current_time <= end_time:

error = x_ref - x

I(ntegral) component of the PID controller
integral = integral + error*dt

D(erivative) component of the PID controller
deriv = (error - previous_error)/dt

the output (action) of the PID controller
action = K_p*error + K_i*integral + K_d*deriv

remember the last error when the previous action
was applied to the plant
previous_error = error

apply the new action to the plant to calculate
the new (current) speed
x, v = plant(action)

print(f"Time: {current_time} Action: {action}, Position={x}")
pw.write(f'{x} {current_time}\n')

save v and current_time in the corresponding lists
time.append(current_time)
position.append(x)

advance the time
current_time += dt

pw.close()

plot speed vs time

4

plt.plot(time, position)
plt.ylim(0, 1.2) # set the limits of the range for the y-axis
plt.show() # display the plot

[]:

5

	5ELEN018W - Tutorial 7 2025 Solutions
	Exercise 2
	Exercise 3

