S5ELENO018W - Tutorial 2 2026 Solutions

[1]: | import math
import numpy as np
from scipy import linalg, optimize
import matplotlib.pyplot as plt
from spatialmath import *
from spatialmath.base import *
from spatialmath.base import sym
from spatialgeometry import *
from roboticstoolbox import *

Exercise 1

[13]: def dof(N, J, m, f_list):
d = mx(N-1-J) + sum(f_list)
return d

testing the function
dof(5, 4, 3, [1, 1, 1, 11)

[13]: 4

Exercise 2 - Grubler’s Formula
dof=m-(N—=1—J)+ 3] fi=3%x(6-1-T)+1x7=1
Exercise 3 - Python F-Strings

[4]: name = input('Enter your name: ')
print (f'Hello {name.upper()}!")

Enter your name: John

Hello JOHN!

Exercise 4 - More on Grubler’s Formula

[12]: def grubler():
joint_types = ['revolute', 'prismatic', 'helical', 'cylindrical',
<'universal', 'spherical'l]

dof for the joint types above - this is not used here but for reference,
<%t 18 tncluded
dof_per_joint_type = [1, 1, 1, 2, 2, 3]

this will store user inputs

number_of _joints_per_type = []

for joint in joint_types:
number = input(f'How many {joint} joints: ')
number_of_joints_per_type.append(int (number))

N = input('How many links (including the ground): ')
type = input('planar or spatial: ') # this should check for walid answers,

<as well
m =3 # default value
if type.lower() == 'spatial':
m =6
else:
m=3

calculate total no of joints

J = sum(number_of_joints_per_type)

£f=0

fi =[]

for i in range(J):
d = int(input(f'How many dof for joint {i}: '))
fi.append(d)
f +=d

Report the results

print(f'm = {m} ({typel)")
print(£'J = {J}")
print(f'N = {N} (including the ground)')

for i in range(l, J+1):
print(f'f_{i} = {fi[i-113}')

print(f'dof = m*(N-1-J)', end='') # do not insert a newline at the end
for i in range(1l, J+1):

print(f' + f_{i}', end='")

print(f' = {m}*x({N}-1-{J}) + ', end='")

[1]:

for i in range(J-1):
print(f'{fi[il} + ', end='")

print (fi[J-1], end='")

print(f' = {sum(fi)}"')

test the function

grubler ()

How many revolute joints: 4

How many prismatic joints: O

How many helical joints: O

How many cylindrical joints: O

How many universal joints: O

How many spherical joints: O

How many links (including the ground): 5

planar or spatial: planar

How
How
How
How

0.1

many dof for joint O:
many dof for joint 1:
many dof for joint 2:
many dof for joint 3:

[S N

w

(planar)

(Sl

(including the ground)

1

=1

1

1

mx(N-1-J) + £ 1 + £ 2+ f 3 + f 4 =23%x(5-1-4) +1 +1+ 1+ 1

Exercise 5 - A Robot Navigating a Maze

import random

maze = {}
initialise maze as empty
for i in range(1,6):

for j in range(1,6):
maze[(i,j)] = "'

place the obstacles

maze[(2,2)]

IOI

maze[(3,3)] = 'O’
maze[(4,4)] = '0"

print (maze)

4

[2]:

def move(coordinates_list, action):
x = coordinates_list[0]
y = coordinates_list[1]

if action == 'E':

if y < 5 and maze[(x, y+1)] != '0':

return (x, y+1)
elif action == 'S':
if x < 5 and maze[(x+1, y)] !
return (x+1, y)
elif action == 'W':

if y > 1 and maze[(x, y-1)] != '0':

return (x, y-1)
elif action == 'N':

if x > 1 and maze[(x-1, y)] != '0':

return (x-1, y)

1f nothing of the above the robot cannot move

return (x, y)

{@, v, @, 2, @, 3): ', @, 49"
'0', (2, 3): ', (2, 4 ', (2, B): 'Y, (3, 1)
(3, 4: ', 3,5): ", 4, 1D: "', (4, 2): ,

I
o

v, (5, 1): "', (B, 2): ', (5, 3): ', (5, 4):

maps 1 to 'N', 2 to 'E', 3 to 'S', 4 to
def num2Action(n):

if n ==
return 'N'
elif n ==
return 'E'
elif n ==
return 'S'
elif n ==

return 'W'

return 'No op' # mno operation result

returns the number of steps

def simulation():
start_position = (4,2)
goal _position = (2,4)

current_pos = start_position
#print (current_pos)

(1, 5): "

vr,o(@3, 2):
(4, 3): '',

', (5, 5):

2, 1: ',
", (3, 3):
(4, 4: '0',
ll}

2, 2):
IOI’
(4, 5):

[]:

number of steps
steps = 0

keep moving until the robot reaches the goal
while current_pos != goal_position:

choose a random action

rand_int = random.randint(1l, 4)

map random int to an action

action = num2Action(rand_int)

change the current position
current_pos = move(current_pos, action)
steps += 1

#print (current_pos)

#print (f 'number of steps: {steps}')
return steps

average_steps = 0

for s in range(10000):
steps = simulation()
average_steps += steps

print(f'Average number of steps to reach goal: {average_steps/10000}')

Average number of steps to reach goal: 132.8307

	5ELEN018W - Tutorial 2 2026 Solutions
	Exercise 1
	Exercise 2 - Grubler's Formula
	Exercise 3 - Python F-Strings
	Exercise 4 - More on Grubler's Formula
	Exercise 5 - A Robot Navigating a Maze

