
5elen018w_tutorial2_2025_code

October 30, 2024

5ELEN018W - Tutorial 2 2025 Solutions
[1]: import math

import numpy as np
from scipy import linalg, optimize
import matplotlib.pyplot as plt
from spatialmath import *
from spatialmath.base import *
from spatialmath.base import sym
from spatialgeometry import *
from roboticstoolbox import *

Exercise 1
[13]: def dof(N, J, m, f_list):

d = m*(N-1-J) + sum(f_list)
return d

testing the function
dof(5, 4, 3, [1, 1, 1, 1])

[13]: 4

Exercise 2 - Grubler’s Formula
dof = 𝑚 ⋅ (𝑁 − 1 − 𝐽) + ∑𝐽

𝑖=1 𝑓𝑖 = 3 ∗ (6 − 1 − 7) + 1 ∗ 7 = 1

Exercise 3 - Python F-Strings

[4]: name = input('Enter your name: ')
print(f'Hello {name.upper()}!')

Enter your name: John

Hello JOHN!

1

Exercise 4 - More on Grubler’s Formula
[12]: def grubler():

joint_types = ['revolute', 'prismatic', 'helical', 'cylindrical',␣
↪'universal', 'spherical']

dof for the joint types above - this is not used here but for reference␣
↪it is included

dof_per_joint_type = [1, 1, 1, 2, 2, 3]

this will store user inputs
number_of_joints_per_type = []
for joint in joint_types:

number = input(f'How many {joint} joints: ')
number_of_joints_per_type.append(int(number))

N = input('How many links (including the ground): ')
type = input('planar or spatial: ') # this should check for valid answers␣

↪as well
m = 3 # default value
if type.lower() == 'spatial':

m = 6
else:

m = 3

calculate total no of joints
J = sum(number_of_joints_per_type)
f = 0
fi = []
for i in range(J):

d = int(input(f'How many dof for joint {i}: '))
fi.append(d)
f += d

Report the results
print(f'm = {m} ({type})')
print(f'J = {J}')
print(f'N = {N} (including the ground)')
for i in range(1, J+1):

print(f'f_{i} = {fi[i-1]}')

print(f'dof = m*(N-1-J)', end='') # do not insert a newline at the end
for i in range(1, J+1):

print(f' + f_{i}', end='')

print(f' = {m}*({N}-1-{J}) + ', end='')

2

for i in range(J-1):
print(f'{fi[i]} + ', end='')

print(fi[J-1], end='')
print(f' = {sum(fi)}')

test the function
grubler()

How many revolute joints: 4
How many prismatic joints: 0
How many helical joints: 0
How many cylindrical joints: 0
How many universal joints: 0
How many spherical joints: 0
How many links (including the ground): 5
planar or spatial: planar
How many dof for joint 0: 1
How many dof for joint 1: 1
How many dof for joint 2: 1
How many dof for joint 3: 1

m = 3 (planar)
J = 4
N = 5 (including the ground)
f_1 = 1
f_2 = 1
f_3 = 1
f_4 = 1
dof = m*(N-1-J) + f_1 + f_2 + f_3 + f_4 = 3*(5-1-4) + 1 + 1 + 1 + 1 = 4

0.1 Exercise 5 - A Robot Navigating a Maze

[37]: import random

initialise maze as empty
for i in range(1,6):

for j in range(1,6):
maze[(i,j)] = ''

place the obstacles
maze[(2,2)] = 'O'
maze[(3,3)] = 'O'
maze[(4,4)] = 'O'

print(maze)

3

def move(coordinates_list, action):
x = coordinates_list[0]
y = coordinates_list[1]

if action == 'E':
if y < 5 and maze[(x, y+1)] != 'O':

return (x, y+1)
elif action == 'S':

if x < 5 and maze[(x+1, y)] != 'O':
return (x+1, y)

elif action == 'W':
if y > 1 and maze[(x, y-1)] != 'O':

return (x, y-1)
elif action == 'N':

if x > 1 and maze[(x-1, y)] != 'O':
return (x-1, y)

if nothing of the above the robot cannot move
return (x, y)

{(2, 2): 'O', (1, 1): '', (1, 2): '', (1, 3): '', (1, 4): '', (2, 1): '', (2,
3): '', (2, 4): '', (3, 1): '', (3, 2): '', (3, 3): 'O', (3, 4): '', (4, 1): '',
(4, 2): '', (4, 3): '', (4, 4): 'O', (1, 5): '', (2, 5): '', (3, 5): '', (4, 5):
'', (5, 1): '', (5, 2): '', (5, 3): '', (5, 4): '', (5, 5): ''}

[51]: # maps 1 to 'N', 2 to 'E', 3 to 'S', 4 to 'W'
def num2Action(n):

if n == 1:
return 'N'

elif n == 2:
return 'E'

elif n == 3:
return 'S'

elif n == 4:
return 'W'

return 'No op' # no operation result

returns the number of steps
def simulation():

start_position = (4,2)
goal_position = (2,4)

current_pos = start_position
#print(current_pos)

4

number of steps
steps = 0

keep moving until the robot reaches the goal
while current_pos != goal_position:

choose a random action
rand_int = random.randint(1, 4)
map random int to an action
action = num2Action(rand_int)

change the current position
current_pos = move(current_pos, action)
steps += 1
#print(current_pos)

#print(f'number of steps: {steps}')
return steps

average_steps = 0
for s in range(10000):

steps = simulation()
average_steps += steps

print(f'Average number of steps to reach goal: {average_steps/10000}')

Average number of steps to reach goal: 131.6068

5

	5ELEN018W - Tutorial 2 2025 Solutions
	Exercise 1
	Exercise 2 - Grubler's Formula
	Exercise 3 - Python F-Strings
	Exercise 4 - More on Grubler's Formula
	Exercise 5 - A Robot Navigating a Maze

