5ELENO18W - Robotic Principles
Lecture 9-10: More on Bode Plots, Linearisation
and PID Control Implementation

Dr Dimitris C. Dracopoulos

Linear vs Nonlinear Systems

Linear System Nonlinear System
Output Output
O
(o}
o
'Input 'Input

» In real life all systems are nonlinear, however many of them
can be linearised about their operation point.

Linear systems are easier to analyse and prove mathematically their
behaviour and properties.

How to Specify the

Desired

J Pl(s) l
I

Portion of a Model to Linearise

PID Controller
Water Level Water-Tank System
Input Point Output Polnt
1. L
4 oame |12

=

Desired
Water Level

PI(s)
L_J

PID Controller

Input
p
W ater-Tark System T

Loop Opening

Scope

Example 1

"'_CF’-K-':Cg-'G

. . . G
Show that the transfer function for % is given by =%

(y*K+du)«G=u (1)

Solve manually for 2= or using Sympy. Both ways were shown in
the lecture!

Example 2

?K—LG—E

- . M 7K
Show that the transfer function for d—‘; is given by 1

(uxG+dy)xK=u (2)

Solve manually for d—‘; or using Sympy. Both ways were shown in
the lecture!

Bode Plots Revisited

Consider the watertank of the previous lecture and tutorial:

vVvYyyvyy

>

%VOI:A%:bV—a\/ﬁ (3)
A=20
a=2
b=5

H,er = 10 (reference signal - desired)
Initial condition H(0) =1
PID parameters: P = 1.599340, P, = 0.079967, Pp = 0.

Plot the Bode diagram.

You need to create a subsystem for the part of the plant that you
would like to generate the Bode plot! The output of the PID
controller (input of the subsystem) should be the first signal to the
Bode plot block. The output of the subsystem should be the
second signal selected for the Bode plot block.

The Inverted Pendulum Control Problem - PID Control

Consider the inverted pendulum control problem we have seen in
the last tutorial implementing a PID controller using Simulink:

(M + m)% + mlcosff — ml6?sin@ = F — b.x, (4)
ml cosf % + mé? 6 — mglsin@ = —b,0. (5)

Implement a PID controller for it using Python (not Simulink). For
the values of the parameters see the last tutorial specification.

PID Controller in Python

from sympy import *

#theta_dotdot, theta_dot, theta, z_dotdot, z_dot, =, M, m, 1, b_c, b_p, F =
symbols('theta_dotdot, theta_dot, theta, z_dotdot, x_dot, =z, M, m, 1, b_c, b_p, F')

theta_dotdot, theta_dot, theta, x_dotdot, x_dot, x, F = \
symbols ('theta_dotdot, theta_dot, theta, x_dotdot, x_dot, x, F')

equation 1
eql = (M + m)*x_dotdot + m*l*cos(theta)*theta_dotdot - (m*l*theta_dot**2)*sin(theta) - F + b_c*x_dot

equation 2
eq2 = mxl*cos(theta)*x_dotdot + (m*(1**2))*theta_dotdot - m*g+l*sin(theta) + b_p*theta_dot

sol = nonlinsolve([eql, eq2], (x_dotdot, theta_dotdot))
sol = simplify(sol)
print(list(sol) [0][0])

x_dotdot formula

s1 = list(sol) [0][0]

theta_dotdot formula
s2 = list(sol) [0][1]
print(s2)

dt = 0.01 # time step for the simulation

PID Controller in Python (cont’ed))

Implements the dynamic system (plant) - system inputs are

action_u and the current state (z, z_dot, theta_theta_dot).

The function returns the new state of the plant

(new_z, new_z_dot, new_theta, new_theta_dot).

def plant(action_u, x1, x1_dot, thetal, thetal_dot):
equations of motion:
#M + m)\, \ddot{z} + m\ell\cos\theta\, \ddot{\theta} - m\ell\dot{\theta} {2}\sin\theta &= F - b_c\dot{w.
m\ell\cos\theta\, \ddot{z} + m\ell {2}\, \ddot{\theta} - mg\ell\sin\theta &= - b_p\dot{\theta}.

#action_u is F
m=0.1, M=1, 1=0.5, g=9.81, b_c = 0.1, b_p = 0.01

new_x_dot_dot = sl.subs({F:action_u, x_dot:x1_dot, x:x1, theta_dot:thetal_dot, theta:thetall})
new_theta_dot_dot = s2.subs({F:action_u, x_dot:x1_dot, x:x1, theta_dot:thetal_dot, theta:thetall})

new angular velocity

new_theta_dot = thetal_dot + dt*new_theta_dot_dot
new angle theta

new_theta = thetal + dt*new_theta_dot

new velocity x_dot

new_x_dot = x1_dot + dt*new_x_dot_dot
new position =

new_x = x1 + dt*new_x_dot

return new_x, new_x_dot, new_theta, new_theta_dot

PID Controller in Python (cont’ed))

thetal = 0.4 # current speed initialised to 0
previous_theta = 0 # the speed at the previous time step

thetal_dot = 0 # initial angular velocity
x1 = 0 # initial position

x1_dot = 0 # initial speed

start_time = 0.0
end_time = 10.0

current_time = start_time
theta_ref = 0 # the desired angle for balancing
= -71.39 # proportional gain

-90 # integral gain
=-9 # derivative gain

K_p
K_i
K_d

previous_error = 0.0
integral = 0

log values to file

f = open('myfile.txt', "w")

write initial values to the file
f.urite(f'{thetal} {current_time}\n')

PID Controller in Python (cont’ed))

""" Simulate the system operation from the beginning till
the end of the siimulation '''

while current_time <= end_time:
error = theta_ref - thetal

I(integral) component of the PID controller
integral = integral + error*dt

(D)erivative component of the PID controller
deriv = (error - previous_error)/dt

the output (action) of the PID controller
action = K_p*error + K_ikintegral + K_d*deriv

remember the last error when the previous
action was applied to the plant
previous_error = error

apply the new action to the plant to calculate
the new state

x1, x1_dot, thetal, thetal_dot = plant(action, x1, x1_dot, thetal, thetal_dot)

print(f'Time: {current_time} Action: {action}, Angle={thetal}')
f.write(f'{thetal} {current_time}\n')

advance the time
current_time += dt

£.close()

Plotting the Error

import matplotlib.pyplot as plt

f = open('myfile.txt')

v=1[1

time =[]

for i in f:
[y, t] = i.split(O)
#print (y, t)
v.append(float(y))
time.append(float(t))

print(v)

plt.plot(time, v)
plt.axis([0, 10, -1, 11)
plt.xlabel('Time t')
plt.ylabel('Angle theta')

plt.show()

Plotting the Error (cont’ed)

Angle theta
°
s
8

-0.25

-0.50

-0.75

-1.00
0

The Gymnasium Environment

Installing Gymnasium
Execute in a a terminal (inside Anaconda, if you are using
Anaconda):

pip install swig
pip install gymnasium[toy_text]
pip install gymnasium[box2d]

You can follow the link below for more detailed instructions:
https://github.com /Farama-Foundation/Gymnasium

https://github.com/Farama-Foundation/Gymnasium

The Cart Pole Problem in Gymnasium

A simplified version of the inverted pendulum problem.
» Decision: Force to the left or right.

Action Space:
» 0: Push cart to the left
» 1: Push cart to the right

The Cart Pole System (cont’d)

Observation Space:
A 4-dimensional vector:

» Cart position x

» Cart velocity x

> Pole Angle 0

> Angular velocity 8

https://gymnasium.farama.org/environments/classic_control /cart_pole/

https://gymnasium.farama.org/environments/classic_control/cart_pole/

Example of Robot Agent (Random Policy) for Cart Pole
Balancing

import gymnasium as gym
import time

Create our training environment - a cart with a pole that needs balancing
env = gym.make("CartPole-v1", render_mode="human")

Reset environment to start a new episode

observation, info = env.reset()

observation: what the agent can "see" - cart position, welocity, pole angle, etc.
info: extra debugging information (usually not needed for basic learning)

episode_over = False
total_reward = 0

while not episode_over:
Choose an action: 0 = push cart left, 1 = push cart right

action = env.action_space.sample() # Random action for now - real agents will be smarter!

Take the action and see what happens
observation, reward, terminated, truncated, info = env.step(action)

reward: +1 for each step the pole stays upright
terminated: True if pole falls too far (agent failed)
truncated: True if we hit the time limit (500 steps)

total_reward += reward
episode_over = terminated or truncated

print (f"Episode finished! Total reward: {total_reward}")
time.sleep(3) # wait for 3 secs

env.close()

https:/ /gymnasium.farama.org/introduction /basic_usage/

https://gymnasium.farama.org/introduction/basic_usage/

PID Controller for Cart Pole Balancing in Gymnasium

Write some code to implement a PID controller for the cart-pole
system and apply it in the Gymnasium environment (tutorial
exercise).

PID Controller for Cart Pole Balancing in Gymnasium
(cont’ed))

import gymnasium as gym
import time

Create our training environment - a cart with a pole that needs balancing
env = gym.make("CartPole-vi", render_mode="human")

Reset environmment to start a mew episode

observation, info = env.reset()

observation: cart position, velocity, pole angle, angular velocity

info: extra debugging information (usually not needed for basic learning)

episode_over = False
total_reward = 0

#K_p = 135 # proportional gain
#K_1 = 96.5 # integral gain
#K_d = 47.5 # derivative gain
p = -150
i=-110

d = -50

previous_error = 0.0

integral = O

theta_ref = 0 # the desired balancing angle

dt = 0.01 # the time interval between each step

PID Controller for Cart Pole Balancing in Gymnasium
(cont’ed))

while not episode_over:
error = theta_ref - observation[2]

I(integral) component of the PID controller

integral = integral + error*dt

the above line can be replaced with the line below as the simulator
takes sufficiently small steps so the integral will be the same
#integral = integral + error

(D)erivative component of the PID controller - angular velocity

deriv = (error - previous_error)/dt

the following can replace the line above as obsrvation[3] is the angular velocity
#deriv = -observation[3]

the output (action) of the PID controller
action = K_p*error + K_i*integral + K_d*deriv

Temember the last error when the previous
action was applied to the plant
previous_error = error

debug
print (f'Angle:{observation[2]}, angular_velocity: {observation[3]}, Action: {action}')

the action is binary in this version of the problem
if action >= 0:

action = 1
else:

action = 0

PID Controller for Cart Pole Balancing in Gymnasium
(cont’ed))

Take the action and see what happens
observation, reward, terminated, truncated, info = env.step(action)

reward: +1 for each step the pole stays upright

terminated: True if pole falls too far (agent failed)
truncated: True if we hit the time limit (500 steps)
total_reward += reward

episode_over = terminated or truncated

the loop has terminated - print the results
print(f"Episode finished! Total reward: {total_reward}")
time.sleep(3) # wait for 3 secs

env.close()

