5ELEN018W - Robotic Principles Lecture 8: Control - Part 3

Dr Dimitris C. Dracopoulos

<ロ> < @ > < E > < E > E の < C 1/19

Dimitris C. Dracopoulos

Linear differential equations describing physical dynamic systems (including robots) can be transformed to algebraic equations which can be more easily solved (and also analyse) using the Laplace transform.

・ () 、 () , (

Linear differential equations describing physical dynamic systems (including robots) can be transformed to algebraic equations which can be more easily solved (and also analyse) using the Laplace transform.

The robotic arm performing a surgery (mass spring damper example), seen last week:

・ () 、 () , (

Linear differential equations describing physical dynamic systems (including robots) can be transformed to algebraic equations which can be more easily solved (and also analyse) using the Laplace transform.

The robotic arm performing a surgery (mass spring damper example), seen last week:

$$m\ddot{x} + b\dot{x} + kx = f \tag{1}$$

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 2/19

Linear differential equations describing physical dynamic systems (including robots) can be transformed to algebraic equations which can be more easily solved (and also analyse) using the Laplace transform.

The robotic arm performing a surgery (mass spring damper example), seen last week:

$$m\ddot{x} + b\dot{x} + kx = f \tag{1}$$

assuming all initial conditions are set to 0, then its Laplace transform is:

Linear differential equations describing physical dynamic systems (including robots) can be transformed to algebraic equations which can be more easily solved (and also analyse) using the Laplace transform.

The robotic arm performing a surgery (mass spring damper example), seen last week:

$$m\ddot{x} + b\dot{x} + kx = f \tag{1}$$

assuming all initial conditions are set to 0, then its Laplace transform is:

$$ms^2 + bs + k = F \tag{2}$$

Transfer Functions

Dimitris C. Dracopoulos

The transfer function of a *linear, time-invariant* system is defined as the ratio of the Laplace transform of the output variable Y(s)to the Laplace transform of the input variable R(s),

(ロ)、(型)、(E)、(E)、(E)、(D)、(O)

The transfer function of a *linear*, *time-invariant* system is defined as the ratio of the Laplace transform of the output variable Y(s)to the Laplace transform of the input variable R(s), with all initial conditions assumed to be 0:

・ロト・日下・日下・日・ 日・ うへで

The transfer function of a *linear*, *time-invariant* system is defined as the ratio of the Laplace transform of the output variable Y(s)to the Laplace transform of the input variable R(s), with all initial conditions assumed to be 0:

$$G(s) = \frac{Y(s)}{R(s)}$$
(3)

・ロト・日下・日下・日・ 日・ うへで

The transfer function of a *linear*, *time-invariant* system is defined as the ratio of the Laplace transform of the output variable Y(s)to the Laplace transform of the input variable R(s), with all initial conditions assumed to be 0:

$$G(s) = \frac{Y(s)}{R(s)} \tag{3}$$

・ロト・日本・モン・モン・モー うへで

These are used to make easier the modelling and analysis of dynamic systems.

<ロ > < 部 > < 臣 > < 臣 > 臣 の Q O 4/19

The transfer function of the closed-loop system is:

$$T(s) = \frac{G(s)G_c(s)}{1 + G(s)G_c(s)}$$
(4)

◆□ → ◆□ → ◆ 三 → ◆ 三 → つへぐ

The transfer function of the closed-loop system is:

$$T(s) = \frac{G(s)G_c(s)}{1+G(s)G_c(s)} \tag{4}$$

・ロト・日本・モン・モン・モー うへで

► A system is unstable where the closed loop transfer function diverges for s (e.g. where G(s)G_c(s) = −1).

The transfer function of the closed-loop system is:

$$T(s) = \frac{G(s)G_c(s)}{1+G(s)G_c(s)} \tag{4}$$

- ► A system is unstable where the closed loop transfer function diverges for s (e.g. where G(s)G_c(s) = −1).
- Stability is guaranteed when $G(s)G_c(s) < -1$.

PID Control for the Robot Arm Surgeon

$$m\ddot{x} + b\dot{x} + kx = f \tag{5}$$

The desired position is 1, starting at position x = 0. For all the simulations, the following parameters were used: m = 1, b = 6, k = 9.86960.

PID Control for the Robot Arm Surgeon

$$m\ddot{x} + b\dot{x} + kx = f \tag{5}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

The desired position is 1, starting at position x = 0. For all the simulations, the following parameters were used: m = 1, b = 6, k = 9.86960.

 $K_{p} = 50$

 $K_{p} = 50$

<ロ> < 母> < 豆> < 豆> < 豆> < 豆> < 豆 > < 豆 < ろへの 6/19

large overshoot

- large steady-steady error
- large overshoot
- large settling time

$$K_p = 50, K_d = 2.5$$

$$K_p = 50, K_d = 2.5$$

The *D*-component has reduced:

the overshoot

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣��

The *D*-component has reduced:

- the overshoot
- the settling time

The *D*-component has reduced:

the overshoot

the settling time

Still large steady-state error.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 善臣 - のへで

$$K_p = 50, K_i = 40$$

$$K_p = 50, K_i = 40$$

Dimitris C. Dracopoulos

◆□ → ◆□ → ◆ = → ◆ = → ○ へ ○ 11/19

▶ 0 steady-steady error

- 0 steady-steady error
- still large overshoot

$$K_p = 50, K_i = 40, K_d = 8$$

Dimitris C. Dracopoulos

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ク Q ↔ 12/19

$$K_p = 50, K_i = 40, K_d = 8$$

Dimitris C. Dracopoulos

<□ ▶ < @ ▶ < E ▶ < E ▶ E のQ @ 12/19

- no steady steady error
- no overshoot
- faster rise time

Implementing a Dynamic System and a Controller Programmatically (not Simulink)

Car cruise control can be found in most of the modern cars. The cruise control system keeps the car at a constant speed despite any external disturbances, such as the road surface and incline.

The car's mass m is controlled by a force u. To simplify the situation, we assume that the force u that our controller applies is not affected by other parameters such as tires, etc.

The equation of the system is described by the following:

$$m\dot{v} + bv = u \tag{6}$$

where v is the speed of the car, u is the control action and b is the damping coefficient due to friction.

The Car Cruise Control System

$$m\dot{v} + bv = u \tag{7}$$

(ロト・団ト・ヨト・ヨト ヨーのへで)

▶ m = 1000, b = 50.

• The desired (reference) speed is $v_{ref} = 10$.

• t = 10.0 is the total simulation time

The parameters of the PID controller are: $K_p = 800, K_i = 0, K_d = 40$ (i.e. this is a PD controller).

Implement in Java a PID controller to bring the system to the desired speed.

```
import java.io.*;
class CruiseControl {
    static double v = 0; // current speed initialised to 0
    static double previous v = 0; // the speed at the previous time step
    static double dt = 0.001; // time step for the simulation
    /* Implementnts the dynamic system (plant) - system input is action u
       and the method returns the output of the plant */
    static double plant(double action_u) {
        //m \setminus dot\{v\} + b v = u
        // m = 1000, b = 50, u = 500
        double m = 1000.0;
        int b = 50:
        double v_dot = (action_u - b*v)/m;
        double new_speed = v + v_dot*dt;
        return new_speed;
    }
```

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ℃ 16/19</p>

```
public static void main(String[] args) {
    PrintWriter pw = null;
    trv {
        pw = new PrintWriter("myfile.txt");
    }
    catch(Exception ex) {
        ex.printStackTrace();
    }
    double start time = 0:
    double end_time = 10.0;
    double current time = start time:
    double v ref = 10: // the desired speed
    int K_p = 800; // proportional gain
    int K_i = 0; // integral gain
    int K_d = 40; // derivative gain
    double previous_error = 0;
    double integral = 0;
```

```
/* simulate the system operation from the beginning till
   the end of the simulation */
while (current time <= end time) {
    double error = v_ref - v;
    // I(ntegral) component of the PID controller
    integral = integral + error*dt;
    // D(erivative) component of the PID controller
    double deriv = (error - previous_error)/dt;
    // the output (action) of the PID controller
    double action = K_p*error + K_i*integral + K_d*deriv;
    // remember the last error when the previous action
    // was applied to the plant
    previous_error = error;
    // apply the new action to the plant to calculate
    // the new (current) speed
    v = plant(action);
```

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三 - のへで 19/19