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The Laplace Transform

Linear differential equations describing physical dynamic systems
(including robots) can be transformed to algebraic equations which
can be more easily solved (and also analyse) using the Laplace
transform.

▶ The robotic arm performing a surgery (mass spring damper
example), seen last week:

mẍ + bẋ + kx = f (1)

assuming all initial conditions are set to 0, then its Laplace
transform is:

ms2 + bs + k = F (2)
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Transfer Functions

The transfer function of a linear, time-invariant system is defined
as the ratio of the Laplace transform of the output variable Y (s)
to the Laplace transform of the input variable R(s), with all initial
conditions assumed to be 0:

G (s) =
Y (s)

R(s)
(3)

▶ These are used to make easier the modelling and analysis of
dynamic systems.
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Feedback (Closed-Loop) Controllers Transfer Function

The transfer function of the closed-loop system is:

T (s) =
G (s)Gc(s)

1 + G (s)Gc(s)
(4)

▶ A system is unstable where the closed loop transfer function
diverges for s (e.g. where G (s)Gc(s) = −1).

▶ Stability is guaranteed when G (s)Gc(s) < −1.
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PID Control for the Robot Arm Surgeon

mẍ + bẋ + kx = f (5)

The desired position is 1, starting at position x = 0. For all the
simulations, the following parameters were used:
m = 1, b = 6, k = 9.86960.
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P-Controller

Kp = 50
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P-Controller (cont’d)

▶ large steady-steady error

▶ large overshoot

▶ large settling time
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PD-Controller

Kp = 50,Kd = 2.5
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PD-Controller (cont’d)

The D-component has reduced:

▶ the overshoot

▶ the settling time

Still large steady-state error.
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PI -Controller

Kp = 50,Ki = 40
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PI -Controller

▶ 0 steady-steady error

▶ still large overshoot
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PID-Controller

Kp = 50,Ki = 40,Kd = 8



Dimitris C. Dracopoulos 12/19

PID-Controller

Kp = 50,Ki = 40,Kd = 8



Dimitris C. Dracopoulos 13/19

PID-Controller (cont’d)

▶ no steady steady error

▶ no overshoot

▶ faster rise time
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Implementing a Dynamic System and a Controller
Programmatically (not Simulink)

Car cruise control can be found in most of the modern cars. The
cruise control system keeps the car at a constant speed despite any
external disturbances, such as the road surface and incline.

▶ The car’s mass m is controlled by a force u. To simplify the
situation, we assume that the force u that our controller
applies is not affected by other parameters such as tires, etc.

The equation of the system is described by the following:

mv̇ + bv = u (6)

where v is the speed of the car, u is the control action and b is the
damping coefficient due to friction.
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The Car Cruise Control System

mv̇ + bv = u (7)

▶ m = 1000, b = 50.

▶ The desired (reference) speed is vref = 10.

▶ t = 10.0 is the total simulation time

▶ The parameters of the PID controller are:
Kp = 800,Ki = 0,Kd = 40 (i.e. this is a PD controller).

Implement in Java a PID controller to bring the system to the
desired speed.
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The Car Cruise Control System (cont’d)

import java.io.*;

class CruiseControl {

static double v = 0; // current speed initialised to 0

static double previous_v = 0; // the speed at the previous time step

static double dt = 0.001; // time step for the simulation

/* Implementnts the dynamic system (plant) - system input is action u

and the method returns the output of the plant */

static double plant(double action_u) {

// m \dot{v} + b v = u

// m=1000, b=50, u = 500

double m = 1000.0;

int b = 50;

double v_dot = (action_u - b*v)/m;

double new_speed = v + v_dot*dt;

return new_speed;

}
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The Car Cruise Control System (cont’d)

public static void main(String[] args) {

PrintWriter pw = null;

try {

pw = new PrintWriter("myfile.txt");

}

catch(Exception ex) {

ex.printStackTrace();

}

double start_time = 0;

double end_time = 10.0;

double current_time = start_time;

double v_ref = 10; // the desired speed

int K_p = 800; // proportional gain

int K_i = 0; // integral gain

int K_d = 40; // derivative gain

double previous_error = 0;

double integral = 0;
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The Car Cruise Control System (cont’d)

/* simulate the system operation from the beginning till

the end of the simulation */

while (current_time <= end_time) {

double error = v_ref - v;

// I(ntegral) component of the PID controller

integral = integral + error*dt;

// D(erivative) component of the PID controller

double deriv = (error - previous_error)/dt;

// the output (action) of the PID controller

double action = K_p*error + K_i*integral + K_d*deriv;

// remember the last error when the previous action

// was applied to the plant

previous_error = error;

// apply the new action to the plant to calculate

// the new (current) speed

v = plant(action);
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The Car Cruise Control System (cont’d)

System.out.println("Time: " + current_time + " Action: " +

action + ", Speed=" + v);

pw.println(v + " " + current_time);

// advance the time

current_time += dt;

}

pw.close();

}

}


