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Feedback Controllers

▶ Many types of controllers and control algorithms

▶ The simplest (and one of the most commonly used for certain
systems in industrial process control) is PID control
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PID Controllers

Proportional + Integral + Derivative

▶ Can have just the P component

▶ or both P and I (PI)

▶ or both P and D (PD)

▶ or all 3 of them (PID)
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Proportional Control (P)

The controller applies an action which is proportional to the error
e(t):

action = Kp · e(t) (1)

where Kp is the gain of the proportional controller.
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A Simple Example: A Robot following a Path

Consider a robot that we would like to keep following a given path
at a distance of d1.

▶ The error at any time t is measured by e(t) = d1− d where
d is the minimum current distance from the given path.

▶ if e(t) > 0: the action would be turn by Kp · e degrees away
from the path.

▶ if e(t) < 0: the action would be turn by Kp · e degrees
towards the path.
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Integral Control (I)

Proportional control (P) might not be able to extinguish a
steady-state error.

▶ The integral error calculates the accumulated error over time,
i.e. it introduces some memory for the error.

integral error = Ki ·
∫ t

0
e(τ)dτ (2)

where Ki is the integral gain.

−→ The integral error helps in reducing the steady-steady error,
but it can lead to overshooting.
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Derivative Control - What is a Derivative?

The derivative of a function measures the sensitivity of changes to
the output (value) of the function, based on changes of the input
(independent variable) of the function.

▶ The slope of the tangent line is equal to the derivative.

−→ It is also used to show the direction we need to follow and the
magnitude of the step we need to take, in order to reduce an error
(machine learning, etc).
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Derivative Control (D)

It takes into account how fast the error changes.

derivative error = Kd · de(t)
dt

(3)

▶ It can correct some of the problems introduced by the integral
error, e.g. saturation (the real life physical mechanisms can
never be linear - a motor has always upper bounds, how fast it
can rotate, etc)

−→ It reduces overshooting.
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PID Control

Combining 2 or all 3 components (individual gains can be set to 0
to leave out one or two components from I ,D).

action = Kp · e(t) + Ki ·
∫ t

0
e(τ)dτ + Kd · de(t)

dt
(4)
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PID Tuning

A difficult task is to find an appropriate set of the gain parameters
Kp,Ki ,Kd of the controller so as to perform satisfactorily (or
optimise) with respect to:

▶ steady-state error

▶ transient response

▶ overshooting

▶ settling time
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Linear vs Nonlinear Systems

▶ In real life all systems are nonlinear, however many of them
can be linearised about their operation point.

Linear systems are easier to analyse and prove mathematically their
behaviour and properties.
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Discrete vs Continuous Dynamic Systems

▶ Discrete dynamic systems are described by difference
equations.

x(n) = 5 ∗ x(n − 1) + 6 ∗ x(n − 2) + 2

▶ Continuous dynamic systems are described by differential
equations.

ẍ = 5 ∗ ẋ + 10 ∗ x + 10
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The Laplace Transform

Linear differential equations describing physical dynamic systems
(including robots) can be transformed to algebraic equations which
can be more easily solved (and also analyse) using the Laplace
transform.

▶ The robotic arm performing a surgery (mass spring damper
example), seen last week:

mẍ + bẋ + kx = f (5)

assuming all initial conditions are set to 0, then its Laplace
transform is:

ms2 + bs + k = F (6)
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Transfer Functions

The transfer function of a linear, time-invariant system is defined
as the ratio of the Laplace transform of the output variable Y (s)
to the Laplace transform of the input variable R(s), with all initial
conditions assumed to be 0:

G (s) =
Y (s)

R(s)
(7)

▶ These are used to make easier the modelling and analysis of
dynamic systems.
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Feedback (Closed-Loop) Controllers Transfer Function

The transfer function of the closed-loop system is:

T (s) =
G (s)Gc(s)

1 + G (s)Gc(s)
(8)

▶ A system is unstable where the closed loop transfer function
diverges for s (e.g. where G (s)Gc(s) = −1).

▶ Stability is guaranteed when G (s)Gc(s) < −1.
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PID Control for the Robot Arm Surgeon

mẍ + bẋ + kx = f (9)

The desired position is 1, starting at position x = 0. For all the
simulations, the following parameters were used:
m = 1, b = 6, k = 9.86960.



Dimitris C. Dracopoulos 17/24

P-Controller

Kp = 50
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P-Controller (cont’d)

▶ large steady-steady error

▶ large overshoot

▶ large settling time
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PD-Controller

Kp = 50,Kd = 2.5
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PD-Controller (cont’d)

The D-component has reduced:

▶ the overshoot

▶ the settling time

Still large steady-state error.
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PI -Controller

Kp = 50,Ki = 40
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PI -Controller

▶ 0 steady-steady error

▶ still large overshoot
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PID-Controller

Kp = 50,Ki = 40,Kd = 8
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PID-Controller (cont’d)

▶ no steady steady error

▶ no overshoot

▶ faster rise time


