
Dimitris C. Dracopoulos 1/19

5ELEN018W - Robotic Principles
Lecture 5: Inverse Kinematics

Dr Dimitris C. Dracopoulos

Dimitris C. Dracopoulos 2/19

The problem of Forward kinematics

Kinematic chain: a series of rigid bodies (e.g. links of a robotic
arm) connected together by joints.
The joint angles of a kinematic chain determine the position and
orientation of the end effector.

▶ A coordinate frame i relative to coordinate frame i − 1 is
denoted by i−1Ti :


cos(θi) − sin(θi) cos(αi) sin(θi) sin(αi) ri cos(θi)
sin(θi) cos(θi) cos(αi) − cos(θi) sin(αi) ri sin(θi)

0 sin(αi) cos(αi) di
0 0 0 1

 (1)

where θi , αi , ri , di are the DH parameters.

Dimitris C. Dracopoulos 3/19

The Problem of Forward Kinematics (cont’d)

The problem of forward kinematics is expressed as the calculation
of the transformation between a coordinate frame fixed in the
end-effector and another coordinate frame fixed in the base.
For example, for 6-joint manipulator:

0T6 =
0T1 · 1T2 · 2T3 · 3T4 · 4T5 · 5T6 (2)

Dimitris C. Dracopoulos 4/19

The Problem of Inverse Kinematics
Given a position and orientation of a robot’s end-effector, calculate
the angles θ of the joints.

▶ Solving the kinematics equations of a manipulator robot is a
nonlinear problem.

▶ Given the homogeneous matrix of the end-effector with
respect to the base frame, solve for all the joint angles
θ1, θ2, . . . , θn.

Challenging mathematical problem due to:

1. nature of the nonlinear equations. Often no analytic solutions
(closed form) can be calculated and numerical methods are
required.

2. often, there are multiple solutions (i.e. multiple sets of joint
angles) that can place the end effector at the desired position.

−→ The algorithm must choose the solution that results in
the most natural and efficient motion of the robot.

3. It is possible that no solutions exist

Dimitris C. Dracopoulos 5/19

Applications of Inverse Kinematics

▶ Manufacturing and assembly

▶ Surgery

▶ Search and rescue

Dimitris C. Dracopoulos 6/19

Methods for Solving Inverse Kinematics

▶ Closed-form methods

▶ Iterative methods

Closed-form solutions are desirable because they are faster than
numerical solutions and identify all possible solutions.

▶ They are not general, but robot dependent.

▶ To calculate, they take advantage of particular geometric
features of specific robot mechanisms.

▶ As the number of joints increases, this becomes increasingly
difficult.

▶ For some serial-link robot manipulators, no analytical (closed
form) solution exists!

Dimitris C. Dracopoulos 7/19

Closed-form Methods

▶ Algebraic methods

▶ Geometric methods

Dimitris C. Dracopoulos 8/19

Algebraic Methods for Solving Inverse Kinematics

1. Identify the significant equations containing the joint variables.

2. Manipulate them into a soluble form.

▶ A common strategy is reduction to a equation in a single
variable, e.g.

C1 cos θi + C2 sin θi + C3 = 0

where C1,C2,C3 are constants.

Solution:

θi = 2 tan−1

C2 ±
√

C 2
2 − C 2

3 + C 2
1

C1 − C3



Dimitris C. Dracopoulos 9/19

Algebraic Methods for Solving Inverse Kinematics (cont’d)

▶ Another useful strategy is the reduction to a pair of equations
having the form:

C1 cos θi + C2 sin θi + C3 = 0

C1 sin θi − C2 cos θi + C4 = 0

only one solution:

θi = atan2(−C1C4 − C2C3,C2C4 − C1C3)

Dimitris C. Dracopoulos 10/19

Geometric Methods for Solving Inverse Kinematics

Such methods involve identifying points on the manipulator
relative to which position and/or orientation can be expressed as a
function of a reduced set of the joint variables using trigonometric
relationships.
−→ often results to the decomposition of the spatial problem into
separate planar problems.

▶ Decomposition of the full problem into inverse position
kinematics and inverse orientation kinematics.

▶ The solution is derived by rewriting equation (2) as:

0T6 · 6T5 · 5T4 · 4T3 =
0T1 · 1T2 · 2T3 (3)

Dimitris C. Dracopoulos 11/19

Calculating Analytical Solutions in the Python Robotics
Toolbox

Consider a 2-joint Planar (2D) Robot

Given the position of the end-effector (xE , yE) calculate the
required joint angles to achieve this position.

Dimitris C. Dracopoulos 12/19

Calculating Analytical Solutions in Python (con’d)
create symbols for lengths of the 2 links

>>> a1 = Symbol('a1')

>>> a2 = Symbol('a2')

symbols for joints angles

>>> q1, q2 = symbols("q1:3")

transformation to calculate the position of the end-effector

>>> e = ET2.R()*ET2.tx(a1)*ET2.R()*ET2.tx(a2)

calculate forward kinematics matrix for end-effector

>>> TE = e.fkine([q1, q2])

translation part of matrix gives the position (x_fk, y_fk) of the

end-effector

>>> x_fk, y_fk = TE.t

>>> print(x_fk)

>>> print(y_fk)

create symbolic variables to represent the position of the end-effector

>> x, y = symbols("x, y")

x_fk = x and y_fk = y

then x_fk**2 + y_fk**2 - x**2 - y**2 = 0

>>> eq1 = (x_fk**2 + y_fk**2 - x**2 - y**2).trigsimp()

Dimitris C. Dracopoulos 13/19

Calculating Analytical Solutions in Python (con’d)

>>> print(eq1)

a1**2 + 2*a1*a2*cos(q2) + a2**2 - x**2 - y**2

>>> import sympy # explicitly show that solve belongs to sympy

>>> q2_sol = sympy.solve(eq1, q2) # 2 solutions exist for q2

>>> print(q2_sol)

[-acos(-(a1**2 + a2**2 - x**2 - y**2)/(2*a1*a2)) + 2*pi,

acos((-a1**2 - a2**2 + x**2 + y**2)/(2*a1*a2))]

expand the two equations x_fk=x, y_fk=y

>>> eq2 = tuple(map(sympy.expand_trig, [x_fk - x, y_fk - y]))

>>> print(eq2)

(a1*cos(q1) + a2*(-sin(q1)*sin(q2) + cos(q1)*cos(q2)) - x,

a1*sin(q1) + a2*(sin(q1)*cos(q2) + sin(q2)*cos(q1)) - y)

solve for sin(q1), cos(q1)

>>> q1_sol = sympy.solve(eq2, [sympy.sin(q1), sympy.cos(q1)])

>>> print(q1_sol) # dictionary containing sin(q1) and cos(q1)

Dimitris C. Dracopoulos 14/19

Calculating Analytical Solutions in Python (con’d)

tan(q1) = sin(q1)/cos(q1)

>>> print(q1_sol[sin(q1)]/q1_sol[cos(q1)])

solve for q1

>>> sympy.atan2(q1_sol[sin(q1)], q1_sol[cos(q1)]).simplify()

Dimitris C. Dracopoulos 15/19

Iterative (Numerical) Methods for Solving Inverse
Kinematics

Can be applied to any kinematic robot structure (not robot
dependent).

▶ Slower

▶ In some cases they do not compute all possible solutions

▶ Refining the solution through iterations

▶ Initial starting point affects the solution time

How? Minimise the error between the forward kinematics solution
and the desired end-effector pose ξE :

q∗ = argmin
q

(FK (q)− ξE)

Dimitris C. Dracopoulos 16/19

Numerical Methods for Solving Inverse Kinematics (cont’d)

Various classical numerical methods can be applied, including
among others:

▶ Newton-Raphson: first order approximation of original
equations

▶ Levenberg–Marquardt optimisation: using the second order
derivative for the approximation of the original system.

Dimitris C. Dracopoulos 17/19

The Newton-Raphson Algorithm
The slope (tangent) of a function f (x) for x = xn is defined
(calculated) by the derivative of the function at that point:

f ′(xn) =
f (xn)

xn − xn+1
(4)

Then the approximated solution for finding the root of f (where
f (x) = 0) can be calculated iteratively by:

xn+1 = xn −
f (xn)

f ′(xn)
(5)

Dimitris C. Dracopoulos 18/19

Calculating Numerical Solutions in Python
>>> a1 = 1; a2 = 1

>>> q1, q2 = symbols("q1:3")

>>> e = ET2.R()*ET2.tx(a1)*ET2.R()*ET2.tx(a2)

Desired position of the end-effector

>>> des_pos = np.array([0.5, 0.4])

define the error (E) function

>>> def E(q):

>>> return np.linalg.norm(e.fkine(q).t - des_pos)

Minimise the error (E) between the forward kinematics solution and the

desired position of the end-effector - Use optimize from SciPy

>>> sol = optimize.minimize(E, [0, 0])

>>> print(sol.x) # required q values to achieve des_pos for end-effector

[1.91964289 3.7933814]

Computing the forward kinematics confirms that the

solution is correct - Recall that we started the

calculation for des_pos = np.array([0.5, 0.4])

>>> e.fkine(sol.x).printline()

t = 0.5, 0.4; -32.7°

Dimitris C. Dracopoulos 19/19

Other topics/issues in Robotics

1. Forward Instantaneous Kinematics
→ Given all members of the kinematic chain and the rates of

motion about all joints, find the total velocity of the
end-effector.

→ Usage of the Jacobian matrix J(q)

kvN = J(q)q̇ (6)

where kvN is the velocity of the end-effector expressed in any
frame k

2. Inverse Instantaneous Kinematics
→ Given the positions of all the members of the kinematic chain

and the total velocity of the end-effector, find the rates of the
motion of all joints.

→ Usage of the inverse of the Jacobian matrix

q̇ = J−1(q)vn (7)

