5ELEN018W - Robotic Principles Lecture 5: Inverse Kinematics

Dr Dimitris C. Dracopoulos

The problem of Forward kinematics

Kinematic chain: a series of rigid bodies (e.g. links of a robotic arm) connected together by joints.

The joint angles of a kinematic chain determine the position and orientation of the end effector.

A coordinate frame i relative to coordinate frame i - 1 is denoted by ⁱ⁻¹T_i:

$$\begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i)\cos(\alpha_i) & \sin(\theta_i)\sin(\alpha_i) & r_i\cos(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i)\cos(\alpha_i) & -\cos(\theta_i)\sin(\alpha_i) & r_i\sin(\theta_i) \\ 0 & \sin(\alpha_i) & \cos(\alpha_i) & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(1)

where $\theta_i, \alpha_i, r_i, d_i$ are the DH parameters.

The Problem of Forward Kinematics (cont'd)

The problem of forward kinematics is expressed as the calculation of the transformation between a coordinate frame fixed in the *end-effector* and another coordinate frame fixed in the base. For example, for 6-joint manipulator:

$${}^{0}\boldsymbol{T}_{6} = {}^{0}\boldsymbol{T}_{1} \cdot {}^{1}\boldsymbol{T}_{2} \cdot {}^{2}\boldsymbol{T}_{3} \cdot {}^{3}\boldsymbol{T}_{4} \cdot {}^{4}\boldsymbol{T}_{5} \cdot {}^{5}\boldsymbol{T}_{6}$$
(2)

The Problem of Inverse Kinematics

Given a position and orientation of a robot's end-effector, calculate the angles θ of the joints.

- Solving the kinematics equations of a manipulator robot is a nonlinear problem.
- Given the homogeneous matrix of the end-effector with respect to the base frame, solve for all the joint angles θ₁, θ₂,..., θ_n.

Challenging mathematical problem due to:

- 1. nature of the nonlinear equations. Often no analytic solutions (closed form) can be calculated and numerical methods are required.
- often, there are multiple solutions (i.e. multiple sets of joint angles) that can place the end effector at the desired position.

 \longrightarrow The algorithm must choose the solution that results in the most natural and efficient motion of the robot.

3. It is possible that no solutions exist

Applications of Inverse Kinematics

- Manufacturing and assembly
- Surgery
- Search and rescue

Methods for Solving Inverse Kinematics

- Closed-form methods
- Iterative methods

Closed-form solutions are desirable because they are faster than numerical solutions and identify all possible solutions.

- They are not general, but robot dependent.
- To calculate, they take advantage of particular geometric features of specific robot mechanisms.

Closed-form Methods

- Algebraic methods
- Geometric methods

Algebraic Methods for Solving Inverse Kinematics

- 1. Identify the significant equations containing the joint variables.
- 2. Manipulate them into a soluble form.
- A common strategy is reduction to a equation in a single variable, e.g.

$$C_1 \cos \theta_i + C_2 \sin \theta_i + C_3 = 0$$

where C_1, C_2, C_3 are constants.

Solution:

$$\theta_i = 2 \tan^{-1} \left(\frac{C_2 \pm \sqrt{C_2^2 - C_3^2 + C_1^2}}{C_1 - C_3} \right)$$

Algebraic Methods for Solving Inverse Kinematics (cont'd)

Another useful strategy is the reduction to a pair of equations having the form:

$$C_1 \cos \theta_i + C_2 \sin \theta_i + C_3 = 0$$

$$C_1 \sin \theta_i - C_2 \cos \theta_i + C_4 = 0$$

only one solution:

$$\theta_i = \operatorname{atan2}(-C_1C_4 - C_2C_3, C_2C_4 - C_1C_3)$$

Such methods involve identifying points on the manipulator relative to which position and/or orientation can be expressed as a function of a reduced set of the joint variables using trigonometric relationships.

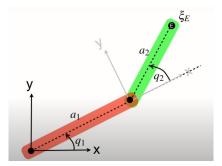
 \longrightarrow often results to the decomposition of the spatial problem into separate planar problems.

- Decomposition of the full problem into inverse position kinematics and inverse orientation kinematics.
- ▶ The solution is derived by rewriting equation (2) as:

$${}^{0}\boldsymbol{T}_{6} \cdot {}^{6}\boldsymbol{T}_{5} \cdot {}^{5}\boldsymbol{T}_{4} \cdot {}^{4}\boldsymbol{T}_{3} = {}^{0}\boldsymbol{T}_{1} \cdot {}^{1}\boldsymbol{T}_{2} \cdot {}^{2}\boldsymbol{T}_{3}$$
(3)

Calculating Analytical Solutions in Matlab

Consider a 2-joint Planar (2D) Robot



Given the position of the end-effector (x_E, y_E) calculate the required joint angles to achieve this position.

Calculating Analytical Solutions in Matlab (con'd)

```
% create symbols for lengths of the 2 links >> syms a1 a2 real
```

```
% transformation to calculate the position of the end-effector
>> e = ETS2.Rz('q1')*ETS2.Tx(a1)*ETS2.Rz('q2')*ETS2.Tx(a2)
```

```
% calculate forward kinematics matrix for end-effector
>> syms q1 q2 real
>> TE = e.fkine([q1 q2])
```

```
% translation part of matrix gives the position (x_E, y_E) of the
% end-effector
>> transl = TE(1:2, 3)
```

% create symbolic variables to represent the position of the end-effector >> syms x_E y_E real

```
% solve the system of 2 equations with 2 unknowns q1, q2 and assign
% solutions to s1, s2
>> [s1, s2] = solve(x_E == transl(1), y_E == transl(2), q1, q2)
```

Calculating Analytical Solutions in Matlab (con'd)

```
% The above gives 2 solutions for 2 different congigurations of the robot
% joints
% see the first solution for given lengths a1=1, a2=1 of the 2 links
```

```
% q1 angle is (first solution): >> subs(s1(1), [a1 a2], [1,1])
```

```
% q2 angle is (first solution): >> subs(s2(1), [a1 a2], [1 1])
```

```
% q1 angle is (second solution):
>> subs(s1(2), [a1 a2], [1,1])
```

```
% q2 angle is (second solution):
>> subs(s2(2), [a1 a2], [1 1])
```

Iterative (Numerical) Methods for Solving Inverse Kinematics

Can be applied to any kinematic robot structure (not robot dependent).

- Slower
- In some cases they do not compute all possible solutions
- Refining the solution through iterations
- Initial starting point affects the solution time

How? Minimise the error between the forward kinematics solution and the desired end-effector pose ξ_E .

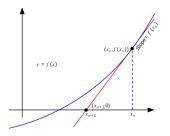
Various classical numerical methods can be applied, including among others:

- Newton-Raphson: first order approximation of original equations
- Levenberg–Marquardt optimisation: using the second order derivative for the approximation of the original system.

The Newton-Raphson Algorithm

The slope (tangent) of a function f(x) for $x = x_n$ is defined (calculated) by the derivative of the function at that point:

$$f'(x_n) = \frac{f(x_n)}{x_n - x_{n+1}}$$
(4)



Then the approximated solution for finding the root of f (where f(x) = 0) can be calculated iteratively by:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

(5)

Calculating Numerical Solutions in Matlab

```
% assume both links have length 1
>> e2 = ETS2.Rz('q1')*ETS2.Tx(1)*ETS2.Rz('q2')*ETS2.Tx(1)
% Desired position of end-effector
>> pos_desired = [0.5 0.8]
% minimise the error between the forward kinematics solution and the
% desired position of the end-effector
% Use fminsearch - multidimensional unconstrained nonlinear minimization
% (Nelder-Mead method)
% the first argument is the error function expressed as an anonymous
% function - the second argument is the initial starting point
q = fminsearch(@(q) norm(se2(e2.fkine(q)).trvec - pos_desired), [0 0])
```

Other topics/issues in Robotics

1. Forward Instantaneous Kinematics

- $\rightarrow\,$ Given all members of the kinematic chain and the rates of motion about all joints, find the total velocity of the end-effector.
- ightarrow Usage of the Jacobian matrix $oldsymbol{J}(oldsymbol{q})$

$$^{k}\boldsymbol{v}_{N}=\boldsymbol{J}(\boldsymbol{q})\dot{\boldsymbol{q}} \tag{6}$$

where ${}^{k}\mathbf{v}_{N}$ is the velocity of the end-effector expressed in any frame k

2. Inverse Instantaneous Kinematics

- $\rightarrow\,$ Given the positions of all the members of the kinematic chain and the total velocity of the end-effector, find the rates of the motion of all joints.
- ightarrow Usage of the inverse of the Jacobian matrix

$$\dot{\boldsymbol{q}} = \boldsymbol{J}^{-1}(\boldsymbol{q})\boldsymbol{v}_n \tag{7}$$