5ELEN018W - Robotic Principles Lecture 4: Kinematics

Dr Dimitris C. Dracopoulos

► Transformations of a frame (object, or point) which are relative to the fixed reference frame

► Transformations of a frame (object, or point) which are relative to the fixed reference frame

Pre-multiply the transformation matrix with the coordinates described in the moving frame:

► Transformations of a frame (object, or point) which are relative to the fixed reference frame

Pre-multiply the transformation matrix with the coordinates described in the moving frame:

$$\mathbf{p}_{\mathsf{x}\mathsf{y}\mathsf{z}} = \mathbf{Transf}_{\mathsf{x}\mathsf{y}\mathsf{z}} \times \mathbf{p}_{\mathsf{x}'\mathsf{y}'\mathsf{z}'} \tag{1}$$

where xyz is the fixed reference frame and x'y'z' is the moving frame.

► Transformations of a frame (object, or point) which are relative to the fixed reference frame

Pre-multiply the transformation matrix with the coordinates described in the moving frame:

$$\mathbf{p}_{\mathsf{x}\mathsf{y}\mathsf{z}} = \mathsf{Transf}_{\mathsf{x}\mathsf{y}\mathsf{z}} \times \mathbf{p}_{\mathsf{x}'\mathsf{y}'\mathsf{z}'} \tag{1}$$

where xyz is the fixed reference frame and x'y'z' is the moving frame.

e.g. for a rotation about the z axis followed by a translation about the x axis, followed by a rotation about the y axis:

► Transformations of a frame (object, or point) which are relative to the fixed reference frame

Pre-multiply the transformation matrix with the coordinates described in the moving frame:

$$\mathbf{p}_{xyz} = \mathbf{Transf}_{xyz} \times \mathbf{p}_{x'y'z'} \tag{1}$$

where xyz is the fixed reference frame and x'y'z' is the moving frame.

e.g. for a rotation about the z axis followed by a translation about the x axis, followed by a rotation about the y axis:

$$Transform_{xyz} = R_y \cdot T_x \cdot R_z$$

► Transformations of a frame (object, or point) which are relative to the moving reference frame

► Transformations of a frame (object, or point) which are relative to the moving reference frame

Post-multiply the transformation matrix with the coordinates described in the moving (current) frame:

► Transformations of a frame (object, or point) which are relative to the moving reference frame

Post-multiply the transformation matrix with the coordinates described in the moving (current) frame:

$$\mathbf{p}_{xyz} = \mathbf{Transf}_{x'y'z'} \times \mathbf{p}_{x'y'z'} \tag{2}$$

where xyz is the fixed reference frame and x'y'z' is the moving frame.

► Transformations of a frame (object, or point) which are relative to the moving reference frame

Post-multiply the transformation matrix with the coordinates described in the moving (current) frame:

$$\mathbf{p}_{xyz} = \mathbf{Transf}_{x'y'z'} \times \mathbf{p}_{x'y'z'} \tag{2}$$

where xyz is the fixed reference frame and x'y'z' is the moving frame.

e.g. for a rotation about the z' axis followed by a translation about the x' axis, followed by a rotation about the y' axis:

► Transformations of a frame (object, or point) which are relative to the moving reference frame

Post-multiply the transformation matrix with the coordinates described in the moving (current) frame:

$$\mathbf{p}_{xyz} = \mathbf{Transf}_{x'y'z'} \times \mathbf{p}_{x'y'z'} \tag{2}$$

where xyz is the fixed reference frame and x'y'z' is the moving frame.

e.g. for a rotation about the z' axis followed by a translation about the x' axis, followed by a rotation about the y' axis:

$$\textit{Transform}_{\mathsf{x}'\mathsf{y}'\mathsf{z}'} = \textit{R}_{\mathsf{z}'} \cdot \textit{T}_{\mathsf{x}'} \cdot \textit{R}_{\mathsf{y}'}$$

Forward Kinematics vs Inverse Kinematics

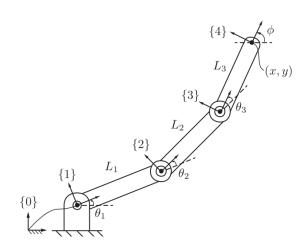
Forward Kinematics vs Inverse Kinematics

 Forward Kinematics: the calculation of the position and orientation of a robot's end-effector from its joint coordinates θ.

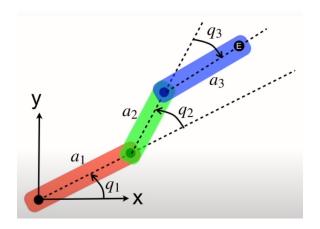
Forward Kinematics vs Inverse Kinematics

- Forward Kinematics: the calculation of the position and orientation of a robot's end-effector from its joint coordinates θ.
- Inverse Kinematics: given a position and orientation of a robot's end-effector, calculate the angles θ of the joints.

Forward Kinematics



Forward Kinematics



Representation of Configuration Space of a Robot

The position and orientation of all links.

Representation of Configuration Space of a Robot

The position and orientation of all links.

The pose of the end-effector (i.e. location and orientation) can be described with basic transformation matrices that can be multiplied together to get the homogeneous matrix.

Representation of Configuration Space of a Robot

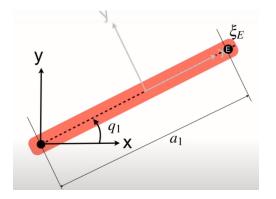
The position and orientation of all links.

The pose of the end-effector (i.e. location and orientation) can be described with basic transformation matrices that can be multiplied together to get the homogeneous matrix.

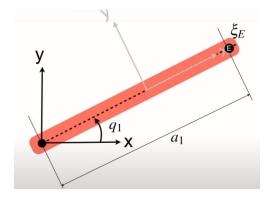
$$HomogeneousMatrix = Transf_1 * Transf_2 * Transf_3 * ... * Transf_n$$
(3)

where n is the number of links (assuming that each of these matrices is the <u>total</u> transformation for each link).

Example of a 1-joint Robot Arm

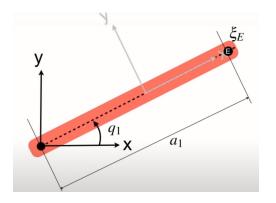


Example of a 1-joint Robot Arm



Rotation by angle q_1 and then translation by a_1 .

Example of a 1-joint Robot Arm



Rotation by angle q_1 and then translation by a_1 .

The homogeneous transformation describing the overall result can be calculated using the following:

$$EndEffector = Rot(q_1) \cdot T_x(a_1) \tag{4}$$

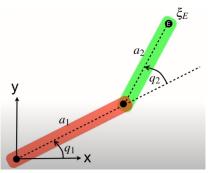
In Matlab Robotics Toolbox:

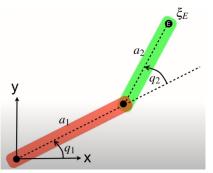
>> a1 = 1

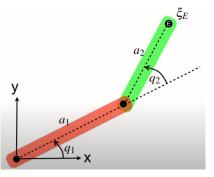
```
>> a1 = 1
>> e = ETS2.Rz('q1')*ETS2.Tx(a1)
```

```
>> a1 = 1
>> e = ETS2.Rz('q1')*ETS2.Tx(a1)
>> e.fkine(pi/2)
```

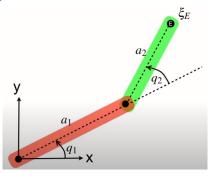
```
>> a1 = 1
>> e = ETS2.Rz('q1')*ETS2.Tx(a1)
>> e.fkine(pi/2)
>> e.teach
```



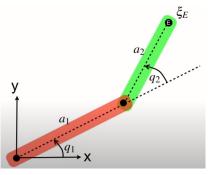




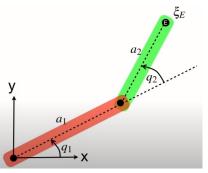
1. Rotation by angle q_1



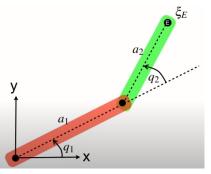
- 1. Rotation by angle q_1
- 2. Translation by a_1



- 1. Rotation by angle q_1
- 2. Translation by a_1
- 3. Rotation by angle q_2



- 1. Rotation by angle q_1
- 2. Translation by a_1
- 3. Rotation by angle q_2
- 4. Translation by a_2



- 1. Rotation by angle q_1
- 2. Translation by a_1
- 3. Rotation by angle q_2
- 4. Translation by a_2

The homogeneous transformation describing the overall result can be calculated using the following:

$$EndEffector = Rot(q_1) \cdot T_x(a_1) \cdot Rot(q_2) \cdot T_x(a_2)$$
 (5)

```
>> a1 = 1;
```

```
>> a1 = 1;
>> a2 = 1;
```

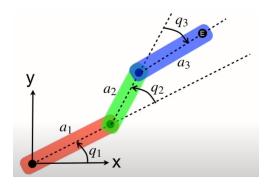
```
>> a1 = 1;
>> a2 = 1;
>> e = ETS2.Rz('q1')*ETS2.Tx(1)*ETS2.Rz('q2')*ETS2.Tx(a2)
```

```
>> a1 = 1;
>> a2 = 1;
>> e = ETS2.Rz('q1')*ETS2.Tx(1)*ETS2.Rz('q2')*ETS2.Tx(a2)
>> e.fkine([pi/2 pi])
```

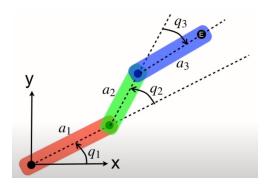
```
>> a1 = 1;
>> a2 = 1;
>> e = ETS2.Rz('q1')*ETS2.Tx(1)*ETS2.Rz('q2')*ETS2.Tx(a2)
>> e.fkine([pi/2 pi])
>> e.teach
```

Example of a 3-joint Planar Robot Arm

Example of a 3-joint Planar Robot Arm



Example of a 3-joint Planar Robot Arm



The homogeneous transformation describing the overall result can be calculated using the following:

$$EndEffector = Rot(q_1) \cdot T_x(a_1) \cdot Rot(q_2) \cdot T_x(a_2) \cdot Rot(q_3) \cdot T_x(a_3)$$

In Matlab Robotics Toolbox:

>> a1 = 1

In Matlab Robotics Toolbox:

```
>> a1 = 1
```

>> a2 = 1

In Matlab Robotics Toolbox:

```
>> a1 = 1
```

$$>> a2 = 1$$

>> a3 = 1

```
>> a1 = 1

>> a2 = 1

>> a3 = 1

>> e = ETS2.Rz('q1')*ETS2.Tx(a1)*ETS2.Rz('q2')*ETS2.Tx(a2) ...

*ETS2.Rz('q3')*ETS2.Tx(a3)
```

In Matlab Robotics Toolbox:

```
>> a1 = 1

>> a2 = 1

>> a3 = 1

>> e = ETS2.Rz('q1')*ETS2.Tx(a1)*ETS2.Rz('q2')*ETS2.Tx(a2) ...

*ETS2.Rz('q3')*ETS2.Tx(a3)
```

>> e.fkine([pi pi/2 pi/4])

The calculation of the position and orientation of a robot's end-effector from its joint coordinates θ_i .

The calculation of the position and orientation of a robot's end-effector from its joint coordinates θ_i .

In the previous slides it has been shown how to do this in 2D spaces for:

The calculation of the position and orientation of a robot's end-effector from its joint coordinates θ_i .

- In the previous slides it has been shown how to do this in 2D spaces for:
 - \rightarrow 1-joint robot arms

The calculation of the position and orientation of a robot's end-effector from its joint coordinates θ_i .

- In the previous slides it has been shown how to do this in 2D spaces for:
 - \rightarrow 1-joint robot arms
 - → 2-joint robot arms

The calculation of the position and orientation of a robot's end-effector from its joint coordinates θ_i .

- ► In the previous slides it has been shown how to do this in 2D spaces for:
 - \rightarrow 1-joint robot arms
 - → 2-joint robot arms
 - → 3-joint robot arms

using simple transformations in Mathematics which correspond to real operations in Physics!

The relationship between two coordinate frames is described by 6 parameters (3 translations and 3 rotations). Can this be improved?

The relationship between two coordinate frames is described by 6 parameters (3 translations and 3 rotations). Can this be improved?

Attach a coordinate frame to the end of each link.

The relationship between two coordinate frames is described by 6 parameters (3 translations and 3 rotations). Can this be improved?

Attach a coordinate frame to the end of each link.

▶ Reduces the relationship between 2 coordinate frames from 6 parameters to 4 parameters.

The relationship between two coordinate frames is described by 6 parameters (3 translations and 3 rotations). Can this be improved?

Attach a coordinate frame to the end of each link.

- ▶ Reduces the relationship between 2 coordinate frames from 6 parameters to 4 parameters.
- Each joint in a robot is described by 4 parameters.

The relationship between two coordinate frames is described by 6 parameters (3 translations and 3 rotations). Can this be improved?

Attach a coordinate frame to the end of each link.

- ▶ Reduces the relationship between 2 coordinate frames from 6 parameters to 4 parameters.
- Each joint in a robot is described by 4 parameters.

How is this achieved?

The relationship between two coordinate frames is described by 6 parameters (3 translations and 3 rotations). Can this be improved?

Attach a coordinate frame to the end of each link.

- Reduces the relationship between 2 coordinate frames from 6 parameters to 4 parameters.
- Each joint in a robot is described by 4 parameters.

How is this achieved?

The coordinate frames have constraints.

The relationship between two coordinate frames is described by 6 parameters (3 translations and 3 rotations). Can this be improved?

Attach a coordinate frame to the end of each link.

- ► Reduces the relationship between 2 coordinate frames from 6 parameters to 4 parameters.
- Each joint in a robot is described by 4 parameters.

How is this achieved?

The coordinate frames have constraints.

 \blacktriangleright x axis of frame j intersects the z axis of frame j-1

The relationship between two coordinate frames is described by 6 parameters (3 translations and 3 rotations). Can this be improved?

Attach a coordinate frame to the end of each link.

- Reduces the relationship between 2 coordinate frames from 6 parameters to 4 parameters.
- Each joint in a robot is described by 4 parameters.

How is this achieved?

The coordinate frames have constraints.

- \blacktriangleright x axis of frame j intersects the z axis of frame j-1
- \blacktriangleright x axis of frame j is perpendicular to the z axis of frame j-1

The relationship between two coordinate frames is described by 6 parameters (3 translations and 3 rotations). Can this be improved?

Attach a coordinate frame to the end of each link.

- ▶ Reduces the relationship between 2 coordinate frames from 6 parameters to 4 parameters.
- Each joint in a robot is described by 4 parameters.

How is this achieved?

The coordinate frames have constraints.

- \blacktriangleright x axis of frame j intersects the z axis of frame j-1
- lacktriangleq x axis of frame j is perpendicular to the z axis of frame j-1
- → 6 parameters 2 constraints means 4 parameters are needed.

4 parameters used associated with each link *i* and joint *i*:

 \triangleright θ_i : joint angle

- $\triangleright \theta_i$: joint angle
- ▶ **d**_i: link offset

- $\triangleright \theta_i$: joint angle
- ▶ d_i: link offset
- $ightharpoonup r_i$ (or a_i in most textbooks): link length

- $\triangleright \theta_i$: joint angle
- ▶ d_i: link offset
- $ightharpoonup r_i$ (or a_i in most textbooks): link length
- $ightharpoonup \alpha_i$: link twist

- $\triangleright \theta_i$: joint angle
- ▶ d_i: link offset
- $ightharpoonup r_i$ (or a_i in most textbooks): link length
- $ightharpoonup \alpha_i$: link twist

4 parameters used associated with each link *i* and joint *i*:

- \triangleright θ_i : joint angle
- ▶ d_i: link offset
- $ightharpoonup r_i$ (or a_i in most textbooks): link length
- $ightharpoonup \alpha_i$: link twist

Each homogeneous transformation A_i is represented as the product of 4 basic transformations:

$$A_i = Rot_{z,\theta_i} \cdot Trans_{z,d_i} \cdot Trans_{x,r_i} \cdot Rot_{x,\alpha_i}$$
 (6)

$$A_i = Rot_{z,\theta_i} \cdot Trans_{z,d_i} \cdot Trans_{x,r_i} \cdot Rot_{x,\alpha_i} =$$

The Denavit-Hartenberg (DH) Notation (cont'd)

$$A_i = Rot_{z,\theta_i} \cdot Trans_{z,d_i} \cdot Trans_{x,r_i} \cdot Rot_{x,\alpha_i} =$$

$$\begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i) & 0 & 0 \\ \sin(\theta_i) & \cos(\theta_i) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \cos(\alpha_i) & -\sin(\alpha_i) & 0 \\ 0 & \sin(\alpha_i) & \cos(\alpha_i) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha_i) & -\sin(\alpha_i) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The Denavit-Hartenberg (DH) Notation (cont'd)

$$A_i = Rot_{z,\theta_i} \cdot Trans_{z,d_i} \cdot Trans_{x,r_i} \cdot Rot_{x,\alpha_i} =$$

$$\begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i) & 0 & 0 \\ \sin(\theta_i) & \cos(\theta_i) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ \times \begin{bmatrix} 1 & 0 & 0 & r_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha_i) & -\sin(\alpha_i) & 0 \\ 0 & \sin(\alpha_i) & \cos(\alpha_i) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha_i) & -\sin(\alpha_i) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i)\cos(\alpha_i) & \sin(\theta_i)\sin(\alpha_i) & r_i\cos(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i)\cos(\alpha_i) & -\cos(\theta_i)\sin(\alpha_i) & r_i\sin(\theta_i) \\ 0 & \sin(\alpha_i) & \cos(\alpha_i) & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(7)

◄□▶◀률▶◀臺▶◀臺▶ 臺 ∽

The DH notation requires a table. The number of rows equals the number of joints and it has 4 columns each one corresponding to the 4 parameters for the joint *i* of that row.

The DH notation requires a table. The number of rows equals the number of joints and it has 4 columns each one corresponding to the 4 parameters for the joint i of that row.

The DH notation requires a table. The number of rows equals the number of joints and it has 4 columns each one corresponding to the 4 parameters for the joint *i* of that row.

Joint	θ	r	d	α
1	θ_1	r_1	d_1	α_1
2	θ_2	r_2	d_2	α_2
3	θ_3	<i>r</i> ₃	d_3	α_3
4	θ_4	<i>r</i> ₄	d_4	α_{4}

The DH notation requires a table. The number of rows equals the number of joints and it has 4 columns each one corresponding to the 4 parameters for the joint *i* of that row.

For example for a robot with 4 joints:

Joint	θ	r	d	α
1	θ_1	r_1	d_1	α_1
2	θ_2	<i>r</i> ₂	d_2	α_2
3	θ_3	<i>r</i> ₃	d_3	α_3
4	θ_4	<i>r</i> ₄	d_4	α_{4}

For <u>revolute joints</u>: Only θ changes, all the other 3 parameters are fixed according to the robot mechanism.

The DH notation requires a table. The number of rows equals the number of joints and it has 4 columns each one corresponding to the 4 parameters for the joint *i* of that row.

Joint	θ	r	d	α
1	θ_1	r_1	d_1	α_1
2	θ_2	<i>r</i> ₂	d_2	α_2
3	θ_3	<i>r</i> ₃	d_3	α_3
4	θ_4	<i>r</i> ₄	d_4	α_{4}

- For <u>revolute joints</u>: Only θ changes, all the other 3 parameters are fixed according to the robot mechanism.
- For *prismatic joints*: Only *d* changes, all the other 3 parameters are fixed according to the robot mechanism.

The DH notation requires a table. The number of rows equals the number of joints and it has 4 columns each one corresponding to the 4 parameters for the joint *i* of that row.

Joint	θ	r	d	α
1	θ_1	r_1	d_1	α_1
2	θ_2	<i>r</i> ₂	d_2	α_2
3	θ_3	<i>r</i> ₃	d_3	α_3
4	θ_4	<i>r</i> ₄	d_4	α_{4}

- For <u>revolute joints</u>: Only θ changes, all the other 3 parameters are fixed according to the robot mechanism.
- For *prismatic joints*: Only *d* changes, all the other 3 parameters are fixed according to the robot mechanism.

Consider the following DH table:

Joint	θ	r	d	α
1	π	5	2	$\frac{\pi}{2}$

Consider the following DH table:

Joint	θ	r	d	α
1	π	5	2	$\frac{\pi}{2}$

What is the DH matrix which corresponds to the above table?

Consider the following DH table:

Joint	θ	r	d	α
1	π	5	2	$\frac{\pi}{2}$

What is the DH matrix which corresponds to the above table?

Answer:

Consider the following DH table:

Joint	θ	r	d	α
1	π	5	2	$\frac{\pi}{2}$

What is the DH matrix which corresponds to the above table?

Answer:

To calculate, apply Equation (7).

Finding the Pose of the End-Effector relative to the Base Frame

Assume that $A_1, A_2, A_3 \dots A_n$ are the DH matrices of all the robot joints $1, 2, 3, \dots n$.

Finding the Pose of the End-Effector relative to the Base Frame

Assume that $A_1, A_2, A_3 \dots A_n$ are the DH matrices of all the robot joints $1, 2, 3, \dots n$.

Then the calculation requires the multiplication of all the matrices:

$$Pose_{end_effector} = A_1 \cdot A_2 \cdot A_3 \dots A_n \tag{8}$$

Example: Calculation of the Pose of the End-Effector

The following DH matrices correspond to the joints of a robot, from robot base to end-effector. Find the pose of the end-effector relative to the robot base.

$$A_1 = \left[\begin{array}{rrrr} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

$$A_2 = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

$$A_3 = \left[\begin{array}{rrrr} -1 & 0 & 0 & -2 \\ 0 & -0 & 1 & 0 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

Example: Calculation of the Pose of the End-Effector (cont'd)

Example: Calculation of the Pose of the End-Effector (cont'd)

Simply calculate $A_1 * A_2 * A_3$.