
Dimitris C. Dracopoulos 1/27

5ELEN018W - Robotic Principles
Lecture 3: Position and Orientation:

Transformations

Dr Dimitris C. Dracopoulos

Dimitris C. Dracopoulos 2/27

Pose

Pose is the position and orientation of one coordinate frame with
respect to another reference coordinate frame.

▶ Multiple coordinate frames are used in robotics to facilitate
the computations for motion and different types of
functionality.

▶ NASA is using them to simplify calculations!

Dimitris C. Dracopoulos 3/27

Pose (cont’d)
The robotic hand needs to grasp something located in a specific
point in space.
▶ The orientation of the hand needs to be described
▶ A coordinate frame is attached to the body (hand)
▶ The coordinate frame attached to the body needs to be

described with respect to a reference coordinate frame
(possible the world coordinate frame)

Dimitris C. Dracopoulos 4/27

Reference Frames in Real World Robots

Dimitris C. Dracopoulos 5/27

How to Specify Pose

Using transformations:
▶ Rotation

→ represents orientation
→ changes the reference frame in which a vector or frame is

represented
→ rotate a vector or a frame

▶ Translation (linear move along one of the axes)

Dimitris C. Dracopoulos 6/27

Terminology of Coordinate Frames

Dimitris C. Dracopoulos 7/27

Pose in the 2D Space
Rotation:

▶ A new coordinate frame {B} with the same origin as {A} but
rotated counter-clockwise by angle θ (positive angle)

▶ Transforms vectors (their coordinates) from new frame {B} to
the old frame {A}:(

Ax

Ay

)
=

(
cosθ −sinθ
sinθ cosθ

)(
Bx

By

)
(1)

Dimitris C. Dracopoulos 8/27

Properties of the Rotation Matrix

(
cosθ −sinθ
sinθ cosθ

)
▶ The inverse matrix is the same as the Transpose! R−1 = RT

→ easy to compute

▶ The determinant is 1: det(R) = 1

→ the length of a vector is unchanged after the rotation

Dimitris C. Dracopoulos 9/27

Creating a rotation matrix in the Python Robotics Toolbox

Python Robotics Toolbox:
https://github.com/petercorke/RVC3-python

>>> from spatialmath.base import *

>>> R = rot2(math.pi/2) # angle in radians by default

array([[0, -1],

[1, 0]])

>>> rot2(90, 'deg') # angle in degrees

array([[-1, 0],

[0, -1]])

https://github.com/petercorke/RVC3-python

Dimitris C. Dracopoulos 10/27

Visualising Rotation

The orientation represented by a rotation matrix can be visualised
as a coordinate frame:

R2 = rot2(-math.pi/2)

trplot2(R2)

Dimitris C. Dracopoulos 11/27

Operations for Matrix Rotations

The product of two rotation matrices is also a rotation matrix:

R2=rot2(-math.pi/2)

R=rot2(math.pi/2)

R@R2

▶ @ must be used for multiplication of NumPy arrays! Do not
use *

The toolbox also supports symbolic operations:

from sympy import *

theta = Symbol('theta')

R = Matrix(rot2(theta)) # convert to SymPy matrix

Dimitris C. Dracopoulos 12/27

Operations for Matrix Rotations (cont’d)

>>> R*R

Matrix([

[-sin(theta)**2 + cos(theta)**2, -2*sin(theta)*cos(theta)],

[2*sin(theta)*cos(theta), -sin(theta)**2 + cos(theta)**2]])

>>> simplify(R*R)

Matrix([

[cos(2*theta), -sin(2*theta)],

[sin(2*theta), cos(2*theta)]])

>>> R.det()

sin(theta)**2 + cos(theta)**2

>>> R.det().simplify()

1

Dimitris C. Dracopoulos 13/27

How to Represent Translation

Just a vector with 2 elements corresponding to how much we move
along the x and y axes.

V =

(
vx
vy

)
(2)

Assuming P is the position of some object in a 2D space then we
can apply transformation TV by simply adding V to P:

TV (P) = P + V (3)

Dimitris C. Dracopoulos 14/27

Homogeneous Form

To represent both rotation and translation using a single matrix: cosθ −sinθ Vx

sinθ cosθ Vy

0 0 1


The left part is the rotation matrix and the right column is the
translation vector!
A row [0, 0, 1] is appended in the end.

▶ The above represents first a translation (Vx ,Vy) followed by a
rotation with angle θ.

Dimitris C. Dracopoulos 15/27

Derivation of the Homogeneous Form

Dimitris C. Dracopoulos 16/27

Derivation of the Homogeneous Form (cont’d)

(
Ax

Ay

)
=

(
A′
x

A′
y

)
+

(
tx
ty

)
=

(
cosθ −sinθ
sinθ cosθ

)(
Bx
By

)
+

(
tx
ty

)

=

(
cosθ −sinθ tx
sinθ cosθ tx

) Bx
By
1


or equivalently: Ax

Ay

1

 =

(
ARB(θ)

AtB
01×2 1

) Bx
By
1

 (4)

▶ The homogeneous transformation can be considered as the
relative pose which first translates the coordinate frame by
AtB with respect to frame {A} and then is rotated by ARB(θ)

Dimitris C. Dracopoulos 17/27

Working with the Toolbox for Homogeneous
Transformations

>>> trot2(0.3) # translation of 0 and rotation by 0.3 radians.

which is equivalent to the composition of a translation of 0
followed by a rotation of 0.3 radians:

>>> transl2(0, 0) @ trot2(0.3)

An example of a translation of (1, 2) followed by a rotation of 30
degrees:

>>> TA = transl2(1,2) @ trot2(30, "deg")

A coordinate frame representing the above pose can be plotted:

plotvol2([0, 5]); # range of values in both axes is [0, 5]

trplot2(TA, frame="A", color="b");

add the reference frame to the plot

T0 = transl2(0, 0);

trplot2(T0, frame="0", color="k");

Dimitris C. Dracopoulos 18/27

Working with the Toolbox for Homogeneous
Transformations (cont’d)

Dimitris C. Dracopoulos 19/27

Pose in the 3D Space

Rotation:

▶ A new coordinate frame {B} with the same origin as {A} but
rotated with respect to {A}

▶ Transforms vectors from new frame {B} to the old frame {A}:

Dimitris C. Dracopoulos 20/27

Elementary Rotation Matrices in 3D

Rotation about the x-axis:

Rx(θ) =

 1 0 0
0 cosθ −sinθ
0 sinθ cosθ

 (5)

Rotation about the y -axis:

Ry (θ) =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

 (6)

Rotation about the z-axis:

Rz(θ) =

 cosθ −sinθ 0
sinθ cosθ 0
0 0 1

 (7)

Dimitris C. Dracopoulos 21/27

Properties of the 3D Rotation Matrix

Similarly with the 2D case:
▶ The inverse matrix is the same as the Transpose! R−1 = RT

→ easy to compute

▶ The determinant is 1: det(R) = 1

→ the length of a vector is unchanged after the rotation

▶ Rotations in 3D are not commutative (the order of rotation
matters!)

Dimitris C. Dracopoulos 22/27

Representation of Rotation in 3D as an Axis-Angle

Combining:

▶ a unit vector e indicating a single axis of rotation

▶ an angle θ describing the magnitude of the rotation about the
axis

Example:

(axis, angle) =

 ex
ey
ez

 , θ

 =

 0
0
1

 ,
π

2

 (8)

a rotation of 90◦ = π
2 about the z-axis.

Reminder: 2π = 360◦ ⇒ π = 180◦ ⇒ π
2 = 90◦

Dimitris C. Dracopoulos 23/27

Python Toolbox Example
Rx(

π
2) can be represented as:

>>> R = rotx(math.pi / 2)

The orientation represented by a rotation matrix can be visualized
as a coordinate frame rotated with respect to the reference
coordinate frame:
trplot(R)

Dimitris C. Dracopoulos 24/27

How to Represent Translation in 3D

Just a vector with 3 elements corresponding to how much we move
along the x , y and z axes.

V =

 vx
vy
vz

 (9)

Assuming P is the position of some object then we can apply
transformation TV by simply adding V to P:

TV (P) = P + V (10)

Dimitris C. Dracopoulos 25/27

Representing Pose in 3D

Different ways:

▶ Vector and 3 angles (roll, pitch, yaw)
▶ Homogeneous transformation (rotation and translation)

→ advantage of transformations calculations using matrix
multiplications!

Dimitris C. Dracopoulos 26/27

Homogeneous Transformation in 3D

Construct a 4× 4 array with the rotation matrix with 3 zeros (0) in
the row below it, and the translation vector with an extra element
of 1, as a column next to the rotation matrix:
e.g. rotation about x-axis with translation elements of vx , xy , vz

Rx(θ) =


1 0 0 vx
0 cosθ −sinθ vy
0 sinθ cosθ vz
0 0 0 1

 (11)

−→ Remember, the matrix-based transformations allow to apply
them (or even to combine them!) using matrix multiplication!

Dimitris C. Dracopoulos 27/27

Homogeneous Transformation in 3D - Inverse
Transformation

Although the inverse of the homogeneous transformation can be
calculated as normally by computing the inverse of the original
matrix (transformation), this can be done much faster.

▶ The homogeneous transformation matrix can be written as:[
R d
0 1

]
where R is the rotation matrix part and d is the translation
vector part.

▶ then the inverse of the matrix (transformation) can be
calculated as: [

R ′ −R ′ ∗ d
0 1

]

