5ELENO18W - Robotic Principles
Lecture 3: Position and Orientation:
Transformations

Dr Dimitris C. Dracopoulos

Pose

Pose is the position and orientation of one coordinate frame with
respect to another reference coordinate frame.

Pose

Pose is the position and orientation of one coordinate frame with
respect to another reference coordinate frame.
» Multiple coordinate frames are used in robotics to facilitate

the computations for motion and different types of
functionality.

Pose
Pose is the position and orientation of one coordinate frame with
respect to another reference coordinate frame.

» Multiple coordinate frames are used in robotics to facilitate
the computations for motion and different types of
functionality.

» NASA is using them to simplify calculations!

Pose (cont'd)

The robotic hand needs to grasp something located in a specific
point in space.

Pose (cont'd)
The robotic hand needs to grasp something located in a specific
point in space.
» The orientation of the hand needs to be described

Pose (cont'd)
The robotic hand needs to grasp something located in a specific
point in space.
» The orientation of the hand needs to be described
» A coordinate frame is attached to the body (hand)

Pose (cont'd)
The robotic hand needs to grasp something located in a specific
point in space.
» The orientation of the hand needs to be described
» A coordinate frame is attached to the body (hand)
» The coordinate frame attached to the body needs to be
described with respect to a reference coordinate frame
(possible the world coordinate frame)

Pose (cont'd)
The robotic hand needs to grasp something located in a specific
point in space.
» The orientation of the hand needs to be described
» A coordinate frame is attached to the body (hand)
» The coordinate frame attached to the body needs to be
described with respect to a reference coordinate frame
(possible the world coordinate frame)

Reference Frames in Real World Robots

How to Specify Pose

Using transformations:

How to Specify Pose

Using transformations:
> Rotation

How to Specify Pose

Using transformations:
> Rotation
— represents orientation

How to Specify Pose

Using transformations:
> Rotation

— represents orientation
— changes the reference frame in which a vector or frame is
represented

How to Specify Pose

Using transformations:
> Rotation
— represents orientation
— changes the reference frame in which a vector or frame is

represented
— rotate a vector or a frame

How to Specify Pose

Using transformations:
> Rotation

— represents orientation

— changes the reference frame in which a vector or frame is
represented

— rotate a vector or a frame

» Translation (linear move along one of the axes)

Terminology of Coordinate Frames

Pose in the 2D Space

Pose in the 2D Space

Rotation:

Pose in the 2D Space

Rotation:

YA

=
ls.]

cos B

sin@

P
> X\

—sin® AﬁB} cos@

» A new coordinate frame {B} with the same origin as {A} but
rotated counter-clockwise by angle 6 (positive angle)

Pose in the 2D Space

Rotation:
. YA
YB A
a Tp
: b=

P |
.

—sin@ AﬁB} cos 8

» A new coordinate frame {B} with the same origin as {A} but
rotated counter-clockwise by angle 6 (positive angle)

» Transforms vectors (their coordinates) from new frame {B} to
the old frame {A}:

Pose in the 2D Space

Rotation:

=
v+]

cos @

sin@

—sin® A%B} ja > XA

» A new coordinate frame {B} with the same origin as {A} but
rotated counter-clockwise by angle 6 (positive angle)

» Transforms vectors (their coordinates) from new frame {B} to
the old frame {A}:

Ac\ [cosf —sinf By 1)
A,)\ sinf cosf B,

Properties of the Rotation Matrix

cosf —sinf
sinf cos0

Properties of the Rotation Matrix

cosf —sinf
sinf cos0

» The inverse matrix is the same as the Transpose! R~! = RT

Properties of the Rotation Matrix

cos —sinf
sinf cosf
» The inverse matrix is the same as the Transpose! R~! = RT

— easy to compute
» The determinant is 1: det(R) =1

Properties of the Rotation Matrix

cos —sinf
sinf cosf
» The inverse matrix is the same as the Transpose! R~! = RT
— €asy to compute

» The determinant is 1: det(R) =1
— the length of a vector is unchanged after the rotation

Working with Matlab - Rotations

Working with Matlab - Rotations

>> R=rotm2d(pi/2)

Working with Matlab - Rotations

>> R=rotm2d(pi/2)

The orientation represented by a rotation matrix can be visualised
as a coordinate frame:

Working with Matlab - Rotations

>> R=rotm2d(pi/2)

The orientation represented by a rotation matrix can be visualised
as a coordinate frame:

>> plottform2d(R)

Working with Matlab - Rotations

>> R=rotm2d(pi/2)

The orientation represented by a rotation matrix can be visualised
as a coordinate frame:

>> plottform2d(R)
Checking properties:

Working with Matlab - Rotations

>> R=rotm2d(pi/2)

The orientation represented by a rotation matrix can be visualised
as a coordinate frame:

>> plottform2d(R)

Checking properties:

>> det (R)

Working with Matlab - Rotations

>> R=rotm2d(pi/2)

The orientation represented by a rotation matrix can be visualised
as a coordinate frame:

>> plottform2d(R)

Checking properties:

>> det(R)
>> det (R*R)

Working with Matlab - Rotations

>> R=rotm2d(pi/2)

The orientation represented by a rotation matrix can be visualised
as a coordinate frame:

>> plottform2d(R)

Checking properties:

>> det (R)

>> det (R*R)

>> isequal(inv(R), R'")

Working with Matlab - Rotations

>> R=rotm2d(pi/2)

The orientation represented by a rotation matrix can be visualised
as a coordinate frame:

>> plottform2d(R)

Checking properties:

>> det(R)
>> det (R*R)
>> isequal(inv(R), R'")

Symbolic mathematics can also be used:

Working with Matlab - Rotations

>> R=rotm2d(pi/2)

The orientation represented by a rotation matrix can be visualised
as a coordinate frame:

>> plottform2d(R)

Checking properties:

>> det(R)
>> det (R*R)
>> isequal(inv(R), R'")

Symbolic mathematics can also be used:
>> syms theta

Working with Matlab - Rotations

>> R=rotm2d(pi/2)

The orientation represented by a rotation matrix can be visualised
as a coordinate frame:

>> plottform2d(R)

Checking properties:

>> det(R)

>> det (R*R)

>> isequal(inv(R), R'")

Symbolic mathematics can also be used:

>> syms theta
>> R = rotm2d(theta)

Working with Matlab - Rotations

>> R=rotm2d(pi/2)

The orientation represented by a rotation matrix can be visualised
as a coordinate frame:

>> plottform2d(R)

Checking properties:

>> det(R)

>> det (R*R)

>> isequal(inv(R), R'")

Symbolic mathematics can also be used:

>> syms theta
>> R = rotm2d(theta)
>> R*R

Working with Matlab - Rotations

>> R=rotm2d(pi/2)

The orientation represented by a rotation matrix can be visualised
as a coordinate frame:

>> plottform2d(R)

Checking properties:

>> det (R)

>> det (R*R)

>> isequal(inv(R), R'")

Symbolic mathematics can also be used:

>> syms theta

>> R = rotm2d(theta)
>> R*R

>> simplify (R*R)

Working with Matlab - Rotations

>> R=rotm2d(pi/2)

The orientation represented by a rotation matrix can be visualised
as a coordinate frame:

>> plottform2d(R)

Checking properties:

>> det (R)

>> det (R*R)

>> isequal(inv(R), R'")

Symbolic mathematics can also be used:

>> syms theta

>> R = rotm2d(theta)
>> R*R

>> simplify (R*R)

>> det (R)

Working with Matlab - Rotations

>> R=rotm2d(pi/2)

The orientation represented by a rotation matrix can be visualised
as a coordinate frame:

>> plottform2d(R)

Checking properties:

>> det(R)
>> det (R*R)
>> isequal(inv(R), R'")

Symbolic mathematics can also be used:

>> syms theta

>> R = rotm2d(theta)
>> R*R

>> simplify (R*R)

>> det(R)

>> simplify(det(R))

How to Install the Additional (non-Mathworks) Matlab
Robotics Toolbox

Download from
https://github.com/petercorke/RVC3-MATLAB the zip file
and unzip it in a location where you can use it (in the university
labs this should be done in your H: drive).

The toolbox directory in the directory you unzipped the above
should be included in the Matlab path:

» In the university labs and from inside Matlab execute
path(path, 'H: \RVC3-MATLAB\toolbox') assuming that
H:\RVC3-MATLAB contains the extracted contents of the zip
file. You have to execute this every time you restart Matlab in
the labs.

» In your personal computer where you have admin rights, you
can use the pathtool command (from inside Matlab) to add
the additional directory to the Matlab path permanently.

https://github.com/petercorke/RVC3-MATLAB

How to Represent Translation

How to Represent Translation

Just a vector with 2 elements corresponding to how much we move
along the x and y axes.

How to Represent Translation

Just a vector with 2 elements corresponding to how much we move

along the x and y axes.
Vx
V= < Vy > @)

How to Represent Translation

Just a vector with 2 elements corresponding to how much we move

along the x and y axes.
Vx
V= < Vy) @)

Assuming P is the position of some object in a 2D space then we
can apply transformation Ty by simply adding V to P:

Tv(P)=P+V (3)

Homogeneous Form

To represent both rotation and translation using a single matrix:

Homogeneous Form

To represent both rotation and translation using a single matrix:

cos) —sinf Vi
sinf cos V,
0 0 1

Homogeneous Form

To represent both rotation and translation using a single matrix:

cosd —sinf V,
sinf cos V,
0 0 1

The left part is the rotation matrix and the right column is the
translation vector!

Homogeneous Form

To represent both rotation and translation using a single matrix:

cos) —sinf Vi
sinf cos V,
0 0 1

The left part is the rotation matrix and the right column is the
translation vector!
A row [0, 0, 1] is appended in the end.

Derivation of the Homogeneous Form
A\ [AL n ty
A,) LA t,

[cosf —sinf By

~\ sinf cosf By

[cost —sinf t.
“\ sinf cos® t,

Derivation of the Homogeneous Form

A\ [AL n ty

A,) LA t,
[cosf —sinf Bx n ty
~_sin@ cost By t,

By
[cost —sinf t. B
“\ sinf cos® t, 1y
or equivalently:

Ax
Ay
1

Derivation of the Homogeneous Form

A\ [AL ty
<Ay>_<A§/>+<ty>
[cosf —sinf
- (sinf cos > <
B
B

o)+ ()
[cost —sinf t. X
~ \ sind cosf ty Y

1

or equivalently:

B
Ax _(*Re(9) “ts 5
A | = y (4)

» The homogeneous transformation can be considered as the
relative pose which first translates the coordinate frame by
Atg with respect to frame {A} and then is rotated by ARg(f)

Working with the Toolbox for Homogeneous
Transformations

>> tformr2d(pi/2) homogeneous transformation - rotation only

Working with the Toolbox for Homogeneous
Transformations

>> tformr2d(pi/2) homogeneous transformation - rotation only

homogeneous transformation - translation only by z=1, y=2
>> trvec2tform([1 21)

Working with the Toolbox for Homogeneous
Transformations

>> tformr2d(pi/2) homogeneous transformation - rotation only

homogeneous transformation - translation only by z=1, y=2
>> trvec2tform([1 21)
Translation of (1, 2) followed by a rotation of 7 radians:
>> trvec2tform([1 2])*tformr2d(pi/4)

Working with the Toolbox for Homogeneous
Transformations

>> tformr2d(pi/2) homogeneous transformation — rotation only

homogeneous transformation - translation only by z=1, y=2
>> trvec2tform([1 21)
Translation of (1, 2) followed by a rotation of 7 radians:
>> trvec2tform([1 2])*tformr2d(pi/4)
or in a single step:
>> TA = tform2d(1, 2, pi/4)
A coordinate frame representing the above pose can be plotted:
>> axis([0 5 0 5]) range of values in both azes is [0, 5]

Working with the Toolbox for Homogeneous
Transformations

>> tformr2d(pi/2) homogeneous transformation — rotation only

homogeneous transformation - translation only by z=1, y=2
>> trvec2tform([1 2])
Translation of (1, 2) followed by a rotation of 7 radians:
>> trvec2tform([1 2])*tformr2d(pi/4)
or in a single step:
>> TA = tform2d(1, 2, pi/4)
A coordinate frame representing the above pose can be plotted:
>> axis([0 5 0 5]) range of values in both azes is [0, 5]
>> plottform2d(TA)

Working with the Toolbox for Homogeneous
Transformations

>> tformr2d(pi/2) homogeneous transformation — rotation only

homogeneous transformation - translation only by z=1, y=2
>> trvec2tform([1 2])
Translation of (1, 2) followed by a rotation of 7 radians:
>> trvec2tform([1 2])*tformr2d(pi/4)
or in a single step:
>> TA = tform2d(1, 2, pi/4)
A coordinate frame representing the above pose can be plotted:
>> axis([0 5 0 5]) range of values in both azes is [0, 5]
>> plottform2d(TA)
>> TO = trvec2tform([0 0])

Working with the Toolbox for Homogeneous
Transformations

>> tformr2d(pi/2) homogeneous transformation — rotation only

homogeneous transformation - translation only by z=1, y=2
>> trvec2tform([1 2])
Translation of (1, 2) followed by a rotation of 7 radians:
>> trvec2tform([1 2])*tformr2d(pi/4)
or in a single step:
>> TA = tform2d(1, 2, pi/4)
A coordinate frame representing the above pose can be plotted:
>> axis([0 5 0 5]) range of values in both azes is [0, 5]
>> plottform2d(TA)
>> TO = trvec2tform([0 0])
>> plottform2d(TO, frame="0", color="k") reference frame

Working with the Toolbox for Homogeneous
Transformations

>> tformr2d(pi/2) homogeneous transformation — rotation only

homogeneous transformation - translation only by z=1, y=2
>> trvec2tform([1 2])
Translation of (1, 2) followed by a rotation of 7 radians:
>> trvec2tform([1 2])*tformr2d(pi/4)
or in a single step:
>> TA = tform2d(1, 2, pi/4)
A coordinate frame representing the above pose can be plotted:
>> axis([0 5 0 5]) range of values in both azes is [0, 5]
>> plottform2d(TA)
>> TO = trvec2tform([0 0])
>> plottform2d(TO, frame="0", color="k") reference frame

>> TB = trvec2tform([2 1])

Working with the Toolbox for Homogeneous
Transformations

>>

tformr2d(pi/2) homogeneous transformation — rotation only

homogeneous transformation - translation only by z=1, y=2

>>

trvec2tform([1 2])

Translation of (1, 2) followed by a rotation of 7 radians:

>>

trvec2tform([1 2])*tformr2d(pi/4)

or in a single step:

>>

TA = tform2d(1, 2, pi/4)

A coordinate frame representing the above pose can be plotted:

>>
>>
>>
>>

>>
>>

axis([0 5 0 5]) range of values in both azes is [0, 5]
plottform2d (TA)

TO = trvec2tform([0 0])

plottform2d(TO, frame="0", color="k") reference frame

TB = trvec2tform([2 1])
plottform2d (TB,frame="B",color="r");

Working with the Toolbox for Homogeneous
Transformations

>> tformr2d(pi/2) homogeneous transformation — rotation only

homogeneous transformation - translation only by z=1, y=
>> trvec2tform([1 2])
Translation of (1, 2) followed by a rotation of 7 radians:
>> trvec2tform([1 2])*tformr2d(pi/4)
or in a single step:
>> TA = tform2d(1, 2, pi/4)
A coordinate frame representing the above pose can be plotted:
>> axis([0 5 0 5]) range of values in both azes is [0, 5]
>> plottform2d(TA)
>> TO = trvec2tform([0 0])
>> plottform2d(TO, frame="0", color="k") reference frame

>> TB = trvec2tform([2 1])
>> plottform2d(TB,frame="B",color="r");
>> TAB = TAx*TB

Working with the Toolbox for Homogeneous
Transformations

>> tformr2d(pi/2) homogeneous transformation — rotation only

homogeneous transformation - translation only by z=1, y=2
>> trvec2tform([1 2])
Translation of (1, 2) followed by a rotation of 7 radians:
>> trvec2tform([1 2])*tformr2d(pi/4)
or in a single step:
>> TA = tform2d(1, 2, pi/4)
A coordinate frame representing the above pose can be plotted:
>> axis([0 5 0 5]) range of values in both azes is [0, 5]
>> plottform2d(TA)
>> TO = trvec2tform([0 0])
>> plottform2d(TO, frame="0", color="k") reference frame

>> TB = trvec2tform([2 1])

>> plottform2d(TB,frame="B",color="r");
>> TAB = TAx*TB

>> plottform2d(TAB, frame="AB",color="g");

Working with Matlab (cont’d)

N

N
L

Pose in the 3D Space

Pose in the 3D Space

Rotation:

Pose in the 3D Space

Rotation:

T

<b

Ya

{B} > Xq

A}

Xb Vb

» A new coordinate frame {B} with the same origin as {A} but
rotated with respect to {A}

Pose in the 3D Space

Rotation:

W\

<b

Ya

{B} > Xq

A}

2k Vb

» A new coordinate frame {B} with the same origin as {A} but
rotated with respect to {A}

» Transforms vectors from new frame {B} to the old frame {A}:

Pose in the 3D Space

Rotation:

W\

<b

Ya

{B} > Xq

A}

2k Vb

» A new coordinate frame {B} with the same origin as {A} but
rotated with respect to {A}

» Transforms vectors from new frame {B} to the old frame {A}:

Elementary Rotation Matrices in 3D

Elementary Rotation Matrices in 3D

Rotation about the x-axis:

Elementary Rotation Matrices in 3D

Rotation about the x-axis:

1 0 0
R.(0)=| 0 cos® —sinb
0 sinf cosf

|

Elementary Rotation Matrices in 3D

Rotation about the x-axis:

1 0 0
R.(0)=| 0 cos® —sinb
0 sinf cosf

Rotation about the y-axis:

Elementary Rotation Matrices in 3D
Rotation about the x-axis:
1 0 0
R.(0)=| 0 cos® —sinb (5)
0 sinf cosf
Rotation about the y-axis:

cosd 0 sinf
Ry(0)< 0 1 0) (6)

—sin@ 0 cosf

Elementary Rotation Matrices in 3D

Rotation about the x-axis:

1 0 0
R.(0)=| 0 cos® —sinb

(5)
0 sinf cosO

Rotation about the y-axis:

cos 0 sinf
0 1 0 (6)
—sin@ 0 cosf

Ry (6)

Rotation about the z-axis:

Elementary Rotation Matrices in 3D

Rotation about the x-axis:

1 0 0
R.(0)=| 0 cos® —sinb (5)
0 sinf cosO
Rotation about the y-axis:
cos 0 sinf
0 1 0 (6)
—sin@ 0 cosf
Rotation about the z-axis:

cosf —sinf 0
R,(6) = | sin® cos® 0O (7)
0 0 1

Ry (6)

Properties of the 3D Rotation Matrix

Properties of the 3D Rotation Matrix

Similarly with the 2D case:

Properties of the 3D Rotation Matrix

Similarly with the 2D case:
» The inverse matrix is the same as the Transpose! R~! = RT

Properties of the 3D Rotation Matrix

Similarly with the 2D case:
» The inverse matrix is the same as the Transpose! R~! = RT
— easy to compute
» The determinant is 1: det(R) =1

Properties of the 3D Rotation Matrix

Similarly with the 2D case:
» The inverse matrix is the same as the Transpose! R~! = RT
— easy to compute
» The determinant is 1: det(R) =1
— the length of a vector is unchanged after the rotation

Properties of the 3D Rotation Matrix

Similarly with the 2D case:
» The inverse matrix is the same as the Transpose! R~! = RT

— easy to compute

» The determinant is 1: det(R) =1
— the length of a vector is unchanged after the rotation

» Rotations in 3D are not commutative (the order of rotation

matters!)

Representation of Rotation in 3D as an Axis-Angle

Combining:

Representation of Rotation in 3D as an Axis-Angle

Combining:

P a unit vector e indicating a single axis of rotation

Representation of Rotation in 3D as an Axis-Angle

Combining:

P a unit vector e indicating a single axis of rotation

» an angle 6 describing the magnitude of the rotation about the
axis

Representation of Rotation in 3D as an Axis-Angle

Combining:

P a unit vector e indicating a single axis of rotation

» an angle 6 describing the magnitude of the rotation about the
axis
Example:
ey 0

(axis, angle) = e |,0) = 0 ,g (8)
e, 1

Representation of Rotation in 3D as an Axis-Angle

Combining:

P a unit vector e indicating a single axis of rotation

» an angle 6 describing the magnitude of the rotation about the

axis
Example:
ey 0 -
(axis, angle) = e |,0) = 0], > (8)
e, 1

a rotation of 90° = g about the z-axis.

Representation of Rotation in 3D as an Axis-Angle

Combining:

P a unit vector e indicating a single axis of rotation

» an angle 6 describing the magnitude of the rotation about the

axis
Example:
ey 0 -
(axis, angle) = e |,0) = 0], > (8)
e, 1

a rotation of 90° = g about the z-axis.
Reminder: 27 = 360° = 7 = 180° = 5 = 90°

Representation of Rotation in 3D as an Axis-Angle

Combining:

P a unit vector e indicating a single axis of rotation

P an angle 6 describing the magnitude of the rotation about the

axis
Example:
ey 0 -
(axis, angle) = e |,0) = 0], > (8)
e, 1

a rotation of 90° = 7 about the z-axis.
Reminder: 27 = 360° = 7 = 180° = 5 = 90°
> Use the Matlab axang2rotm to convert axis-angle rotation
representation to rotation matrix and rotm2axang to convert
rotation matrix to axis-angle representation!

Representation of Rotation in 3D as an Axis-Angle

Combining:

P a unit vector e indicating a single axis of rotation

P an angle 6 describing the magnitude of the rotation about the

axis
Example:
ey 0 -
(axis, angle) = e |,0) = 0], > (8)
e, 1

a rotation of 90° = 7 about the z-axis.
Reminder: 27 = 360° = 7 = 180° = 5 = 90°
> Use the Matlab axang2rotm to convert axis-angle rotation
representation to rotation matrix and rotm2axang to convert
rotation matrix to axis-angle representation!

» Matlab is using a row representation for this.

Matlab Example

Matlab Example

>> a=[1 0
0 cos(pi)
0 sin(pi)
a=
1.0000 0
0 -1.0000

0 0.0000

-sin(pi)
cos(pi)

0

-0.0000
-1.0000

]

Matlab Example

>> a=[1 0 0
0 cos(pi) -sin(pi)
0 sin(pi) cos(pi) 1]

1.0000 0 0
0 -1.0000 -0.0000
0 0.0000 -1.0000

>> rotm2axang(a)
ans =

1.0000 0 0 3.1416

Robotics Matlab Toolbox Example

>> R = rotmx(pi/2)

Robotics Matlab Toolbox Example

>> R = rotmx(pi/2)

The orientation represented by a rotation matrix can be visualised
as a coordinate frame rotated with respect to the reference
coordinate frame:

Robotics Matlab Toolbox Example

>> R = rotmx(pi/2)

The orientation represented by a rotation matrix can be visualised
as a coordinate frame rotated with respect to the reference
coordinate frame:

plottform(R, linewidth=2)

Robotics Matlab Toolbox Example

>> R = rotmx(pi/2)

The orientation represented by a rotation matrix can be visualised
as a coordinate frame rotated with respect to the reference
coordinate frame:

plottform(R, linewidth=2)

Robotics Matlab Toolbox Example

>> R = rotmx(pi/2)

The orientation represented by a rotation matrix can be visualised
as a coordinate frame rotated with respect to the reference
coordinate frame:

plottform(R, linewidth=2)

To animate the reference frame moving to the specified relative
pose:

>> animtform(R)

A 22/26

How to Represent Translation in 3D

How to Represent Translation in 3D

Just a vector with 3 elements corresponding to how much we move
along the x, y and z axes.

How to Represent Translation in 3D

Just a vector with 3 elements corresponding to how much we move
along the x, y and z axes.

V=1 v (9)

How to Represent Translation in 3D

Just a vector with 3 elements corresponding to how much we move
along the x, y and z axes.

V=1 v (9)

Assuming P is the position of some object then we can apply
transformation Ty by simply adding V to P:

Tv(P)=P+V (10)

Representing Pose in 3D

Different ways:

Representing Pose in 3D

Different ways:

» Vector and 3 angles (roll, pitch, yaw)

Representing Pose in 3D

Different ways:
» Vector and 3 angles (roll, pitch, yaw)

» Homogeneous transformation (rotation and translation)

— advantage of transformations calculations using matrix
multiplications!

Homogeneous Transformation in 3D

Homogeneous Transformation in 3D

Construct a 4 x 4 array with the rotation matrix with 3 zeros (0) in
the row below it, and the translation vector with an extra element
of 1, as a column next to the rotation matrix:

Homogeneous Transformation in 3D

Construct a 4 x 4 array with the rotation matrix with 3 zeros (0) in
the row below it, and the translation vector with an extra element
of 1, as a column next to the rotation matrix:

e.g. rotation about x-axis with translation elements of v,, x,, v,

Homogeneous Transformation in 3D

Construct a 4 x 4 array with the rotation matrix with 3 zeros (0) in
the row below it, and the translation vector with an extra element
of 1, as a column next to the rotation matrix:

e.g. rotation about x-axis with translation elements of v,, x,, v,

0 0 Vy
cos) —sinf v,

sind cosf v,
0 0 1

R«(0) = (11)

O O o

Homogeneous Transformation in 3D

Construct a 4 x 4 array with the rotation matrix with 3 zeros (0) in
the row below it, and the translation vector with an extra element
of 1, as a column next to the rotation matrix:

e.g. rotation about x-axis with translation elements of v,, x,, v,

0 0 Vy
cos) —sinf v,

sind cosf v,
0 0 1

R«(0) = (11)

O O o

— Remember, the matrix-based transformations allow to apply
them (or even to combine them!) using matrix multiplication!

Homogeneous Transformation in 3D - Inverse
Transformation

Although the inverse of the homogeneous transformation can be
calculated as normally by computing the inverse of the original
matrix (transformation), this can be done much faster.

Homogeneous Transformation in 3D - Inverse
Transformation

Although the inverse of the homogeneous transformation can be
calculated as normally by computing the inverse of the original
matrix (transformation), this can be done much faster.

» The homogeneous transformation matrix can be written as:
R d
0 1

where R is the rotation matrix part and d is the translation
vector part.

» then the inverse of the matrix (transformation) can be
calculated as:
R" —R'xd
0 1

