
5COSC023W - Tutorial 3 Exercises Sample Solutions

Exercises 1–2

package uk.ac.westminster.lotterycomposableextendedfullapp

import android.os.Bundle

import androidx.activity.ComponentActivity

import androidx.activity.compose.setContent

import androidx.compose.foundation.layout.Arrangement

import androidx.compose.foundation.layout.Column

import androidx.compose.foundation.layout.Row

import androidx.compose.foundation.layout.Spacer

import androidx.compose.foundation.layout.fillMaxSize

import androidx.compose.foundation.layout.height

import androidx.compose.foundation.layout.width

import androidx.compose.material3.Button

import androidx.compose.material3.Text

import androidx.compose.runtime.Composable

import androidx.compose.runtime.getValue

import androidx.compose.runtime.mutableStateOf

import androidx.compose.runtime.remember

import androidx.compose.runtime.setValue

import androidx.compose.ui.Alignment

import androidx.compose.ui.Modifier

import androidx.compose.ui.unit.dp

import androidx.compose.ui.unit.sp

import kotlin.random.Random

class MainActivity : ComponentActivity() {

var number_of_clicks = 0

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

setContent {

displayNumbers()

}

}

@Composable

fun displayNumbers() {

// make the results list reference and number1-number6 states

// of the composable

var results by remember { mutableStateOf(mutableListOf<Int>(0, 0, 0, 0, 0, 0)) }

1

var number1 by remember { mutableStateOf(0) }

var number2 by remember { mutableStateOf(0) }

var number3 by remember { mutableStateOf(0) }

var number4 by remember { mutableStateOf(0) }

var number5 by remember { mutableStateOf(0) }

var number6 by remember { mutableStateOf(0) }

Column(

Modifier.fillMaxSize(),

horizontalAlignment = Alignment.CenterHorizontally,

verticalArrangement = Arrangement.Center

) {

Row {

Text("Results: ", fontSize = 30.sp)

Text("" + number1, fontSize = 30.sp)

Spacer(Modifier.width(10.dp))

Text("" + number2, fontSize = 30.sp)

Spacer(Modifier.width(10.dp))

Text("" + number3, fontSize = 30.sp)

Spacer(Modifier.width(10.dp))

Text("" + number4, fontSize = 30.sp)

Spacer(Modifier.width(10.dp))

Text("" + number5, fontSize = 30.sp)

Spacer(Modifier.width(10.dp))

Text("$number6", fontSize = 30.sp) // alternative way

}

Spacer(Modifier.height(30.dp))

Row {

Button(onClick = { results = calculate() }) {

Text(text = "Generate", fontSize = 24.sp)

}

Spacer(Modifier.width(20.dp))

Button(onClick = { results = sortResults(results) }) {

Text(text = "Sort", fontSize = 24.sp)

}

}

// buttons for changing individual numbers

Row {

Button(onClick = {

var new_number = 1 + Random.nextInt(59)

while (new_number in results) {

new_number = 1 + Random.nextInt(59)

}

results[0] = new_number

number1 = new_number

}

2

) {

Text(text = "1", fontSize = 24.sp)

}

Button(onClick = {

var new_number = 1 + Random.nextInt(59)

while (new_number in results) {

new_number = 1 + Random.nextInt(59)

}

results[1] = new_number

number2 = new_number

}

) {

Text(text = "2", fontSize = 24.sp)

}

Button(onClick = {

var new_number = 1 + Random.nextInt(59)

while (new_number in results) {

new_number = 1 + Random.nextInt(59)

}

results[2] = new_number

number3 = new_number

}

) {

Text(text = "3", fontSize = 24.sp)

}

Button(onClick = {

var new_number = 1 + Random.nextInt(59)

while (new_number in results) {

new_number = 1 + Random.nextInt(59)

}

results[3] = new_number

number4 = new_number

}

) {

Text(text = "4", fontSize = 24.sp)

}

Button(onClick = {

var new_number = 1 + Random.nextInt(59)

while (new_number in results) {

new_number = 1 + Random.nextInt(59)

}

results[4] = new_number

number5 = new_number

}

) {

Text(text = "5", fontSize = 24.sp)

3

}

Button(onClick = {

var new_number = 1 + Random.nextInt(59)

while (new_number in results) {

new_number = 1 + Random.nextInt(59)

}

results[5] = new_number

number6 = new_number

}

) {

Text(text = "6", fontSize = 24.sp)

}

}

}

// modify the individual numbers displayed based on the values from the list

number1 = results[0]

number2 = results[1]

number3 = results[2]

number4 = results[3]

number5 = results[4]

number6 = results[5]

}

/* Sort the numbers in ascending or descending order based

on whether the number of clicks is even or odd

*/

fun sortResults(results: MutableList<Int>): MutableList<Int> {

++number_of_clicks

var new_results = results.toMutableList()

if (number_of_clicks % 2 == 1)

new_results.sort()

else {

new_results.sort()

new_results.reverse()

}

return new_results

}

// do the actual calculation of new numbers

fun calculate(): MutableList<Int> {

/* note the creation of the new list as in this case

the state of the displayNumbers() will not change otherwise */

val numbers = mutableListOf<Int>()

4

while (numbers.size < 6) {

val new_number = 1 + Random.nextInt(59)

if (new_number !in numbers)

numbers.add(new_number)

}

return numbers

}

}

5

