
Dimitris C. Dracopoulos 1/15

5COSC023W - MOBILE APPLICATION
DEVELOPMENT

Lecture 7: More on Kotlin

Dr Dimitris C. Dracopoulos

Dimitris C. Dracopoulos 2/15

Classes

class Employee (colour: String, n: String) {

val eyeColour: String = colour

var age: Int = 25

val name: String = n

override fun toString(): String {

return "name: $name, eyeColour: $eyeColour, age: $age"

}

}

fun main() {

val e1 = Employee("green", "John")

println(e1)

}

Dimitris C. Dracopoulos 3/15

Creating Class Properties Automatically

▶ Use var or val when you declare the parameters of the
constructor:

class Employee (val eyeColour: String,

var age: Int,

var name: String) {

override fun toString(): String {

return "name: $name, eyeColour: $eyeColour, age: $age"

}

}

fun main() {

val e2 = Employee("brown", 18, "Helen")

println(e2)

}

Dimitris C. Dracopoulos 4/15

Secondary Constructors

Secondary constructors require the constructor keyword and
they should be defined inside the curly braces of the class.

▶ Each secondary constructors needs to call directly or indirectly
the primary constructor of the class using this keyword.

class Employee (var eyeColour: String,

var age: Int,

var name: String) {

var salary = 0

constructor (

eyeColour: String,

age: Int,

name: String,

sal: Int) : this(eyeColour, age, name) {

salary = sal

}

Dimitris C. Dracopoulos 5/15

Secondary Constructors (cont’d)

override fun toString(): String {

return "name: $name, eyeColour: $eyeColour,

age: $age, salary: $salary"

}

}

fun main() {

val e2 = Employee("brown", 18, "Helen", 40000)

println(e2)

}

Dimitris C. Dracopoulos 6/15

Data Classes

Classes which hold just data (not methods) can be created using
data classes.

data class Employee(val name:String, val age:Int)

fun main() {

var e1 = Employee("John", 22)

var e2 = Employee("John", 22)

println(e1 == e2)

}

Equality for data classes is automatically generated without
defining the equals methods (which you need to define for the
comparison of objects created from normal classes)

Dimitris C. Dracopoulos 7/15

Creating Hierarchies of Classes — Open and Abstract
Classes

Dimitris C. Dracopoulos 8/15

Default Values for Function Arguments

Function arguments can have an optional name and an optional
default value.

▶ The order of arguments can be changed if their names is used.

fun colour(red: Int = 0, green: Int = 0, blue:Int = 0) {

}

fun main() {

// default value for green is used, i.e. 0

colour(blue = 255, red = 125)

}

Dimitris C. Dracopoulos 9/15

Variable Number of Arguments

▶ Use the vararg keyword.

▶ The vararg parameter becomes an Array.

▶ A function definition can only specify one parameter as
vararg.

▶ Try to choose the last parameter of a function to be the
vararg.

fun foo(date: String, vararg names: String) {

println("date: $date")

for (n in names)

println(n)

}

fun main() {

foo("26th of February", "James", "Helen", "Joe", "Alice")

}

Dimitris C. Dracopoulos 10/15

Lambda Expressions
Kotlin functions can be stored in variables, in data structures and
passed as arguments to other functions.

▶ Lambda expressions and anonymous functions are function
literals

▶ They can be treated as functions that are not declared but
passed as an expression when a function is required.

▶ A lambda expression is always surrounded by curly braces.

▶ The body goes after the ->
// function foo accepts another function as an argument

fun foo(function_apply: (n: Int)->Int) {

var x1 = function_apply(3)

var x2 = function_apply(5)

var x3 = function_apply(10)

println("$x1, $x2, $x3")

}

fun main() {

foo({n -> n*n})

foo({n -> n + 1})

}

Dimitris C. Dracopoulos 11/15

Passing lambdas as the last argument

▶ If the last parameter of a function is a function, a lambda
expression passed as an argument can be placed outside the
parentheses

foo(){n -> n*2}

▶ If the lambda expression is the only argument to that call, the
parentheses can be omitted:

foo{n -> n*2}

Dimitris C. Dracopoulos 12/15

Maps

fun main() {

var capitals = mapOf("Netherlands" to "Amsterdam",

"Hungary" to "Budapest",

"Finland" to "Helsinki")

println(capitals["Hungary"])

println(capitals.getValue("Finland"))

for ((key, value) in capitals)

println("$key -> $value")

for (entry in capitals)

println(entry.key + ":: " + entry.value)

}

Dimitris C. Dracopoulos 13/15

Sets
Cannot contain duplicate elements.
fun main() {

var cities = mutableSetOf("London", "Paris",

"Berlin", "London",

"Paris")

for (c in cities)

print(c+ " ")

println()

cities += "Warsaw"

cities -= "Paris"

print("Updated set contains: ")

for (c in cities)

print(c + " ")

}

The usual mathematical set operations (union, intersection,
difference and others) are also available.

Dimitris C. Dracopoulos 14/15

Nullable References - An Attempt to fix Tony Hoare’s
“Billion Dollar Mistake”

▶ By default, references cannot receive the value of null.

var s: String = null // Compiler error!

▶ A question mark ? needs to be appended to make a variable
nullable:

var s: String? = null // OK

▶ A nullable type cannot be dereferenced:

var s2: String? = "abc"

s2.length // Compiler error!

▶ Use the safe call ?. to attempt to dereference a nullable
value:

var s2: String? = "abc"

s2?.length // Will give back a value of null if s2 is null

▶ Alternatively, use the non-null assertion operator !!

var s3: String? = "abc"

s3!! // if null throws a NullPointerException

Dimitris C. Dracopoulos 15/15

Comparing Variables

▶ Use == (or equals) for structural comparison

▶ Use === to check if 2 references point to the same object

Dimitris C. Dracopoulos 16/15

The When Expression

Similar to the switch in Java and other programming languages in
the C family.

fun translate(word: String): String =

when (word) {

"Bonjour" -> "Good Morning"

"Bonne Nuit" -> "Good Night"

"Dobré Ráno" -> "Good Morning"

"Dobrý Večer" -> "Good Evening"

else -> "Unknown word"

}

fun main() {

var meaning = translate("Bonjour")

println(meaning)

}

Dimitris C. Dracopoulos 17/15

Access Specifiers

Similar usage to other programming languages supporting object
oriented ptogramming but with different meaning.
When used for members (properties, functions) of a class:

▶ public: available to everyone

▶ private: available to the class only

▶ protected: subclasses can access and override these.

▶ internal: access only within the module where it is defined.

Default access is public.

▶ public and private can be used before the definition of a
class, function or variable (property).

In such cases the meaning of private is access only within the
same file.

Dimitris C. Dracopoulos 18/15

Modules vs Packages

▶ Modules divide code at a higher level than packages.

▶ A library is often a single module consisting of multiple
packages.

▶ The way a project is divided into modules, depends on the
build system (e.g. gradle or maven).

