
Dimitris C. Dracopoulos 1/27

5COSC023W - MOBILE APPLICATION
DEVELOPMENT

Lecture 6: Activity Lifecyle and Configuration
Changes

Dr Dimitris C. Dracopoulos

Dimitris C. Dracopoulos 2/27

The Activity Lifecycle

▶ Created (not visible yet)

▶ Started (visible)

▶ Resume (visible)

▶ Paused(partially invisible)

▶ Stopped (hidden)

▶ Destroyed (gone from memory)

State changes are triggered by user action, configuration changes
such as device rotation, or system action

Dimitris C. Dracopoulos 3/27

The Activity Lifecycle (cont’d)

Dimitris C. Dracopoulos 4/27

When the Callbacks are Called?

▶ onCreate(Bundle savedInstanceState) — static
initialization
▶ onStart() — when Activity (screen) is becoming visible
▶ onRestart() — called if Activity was stopped (calls

onStart())
▶ onResume() — start to interact with user
▶ onPause() — about to resume PREVIOUS Activity

▶ onStop() — no longer visible, but still exists and all state info
preserved

▶ onDestroy() — final call before Android system destroys
Activity

Dimitris C. Dracopoulos 5/27

Implementing Callbacks

▶ Only onCreate() is required

▶ The other callbacks can be (optionally) overridden to change
default behaviour

Dimitris C. Dracopoulos 6/27

The onCreate(Bundle savedInstanceState) method

▶ Called when the Activity is first created

▶ Does all static setup: bind data to lists, configure some of the
UI,...

▶ Only called once during an activity’s lifetime

▶ Accepts a Bundle argument with Activity’s previously saved
state (saved with onSaveInstanceState()), if there was one

▶ Created state is always followed by onStart()

Dimitris C. Dracopoulos 7/27

The onResume method

▶ Called when Activity will start interacting with user

▶ Activity has moved to top of the Activity stack

▶ The activity is both visible and interactive with the user

▶ This is Running state for the activity

Dimitris C. Dracopoulos 8/27

The onPause method

▶ Called when system is about to replace the current activity
with another

▶ The Activity is partly visible but non-interactive with the user

▶ Used to save data, stop animations and anything that
consumes resources

▶ Implementations must be fast (not too much data saved)
because the next Activity is not displayed until this method
returns

▶ Followed by either onResume() if the Activity returns back to
the front, or onStop() if it becomes invisible to the user

Dimitris C. Dracopoulos 9/27

The onStop() method

▶ The activity is no more visible to the user

▶ Use to save data which take too long to save in onPause

▶ It is followed by either onRestart() if Activity is coming
back to interact with user, or onDestroy() if Activity is
going away

Dimitris C. Dracopoulos 10/27

The onDestroy() method

▶ Final call before Activity is destroyed

▶ The user navigates to another activity (e.g. pressing the back
button) or there is a configuration change

▶ The activity is finishing or the system destroys it to save space
(you can distinguish between the 2 by calling isFinishing)

▶ System may destroy Activity without calling this (by simply
killing the process) , therefore use onPause() or onStop() to
save data or state

Dimitris C. Dracopoulos 11/27

Configuration Changes

Configuration changes invalidate the current layout or other
resources in your activity when the user:

▶ Rotates the device

▶ Chooses different system language, so locale changes

▶ Enter multi-window mode

▶ Folding a foldable device with multiple displays

▶ and in other situations...

On configuration change the operating system:

1. Destroys the activity calling:

1.1 onPause()
1.2 onStop()
1.3 onDestroy()

2. Starts the activity again calling:

2.1 onCreate()
2.2 onStart()
2.3 onResume()

Dimitris C. Dracopoulos 12/27

Activity Instance State

▶ State information is created while the Activity is running, such
as a counter, user text, animation progression

▶ State is lost when device is rotated, language changes,
back-button is pressed, or the system clears memory

Dimitris C. Dracopoulos 13/27

Two Different Types of Activity Termination

The way that an activity terminates, determines whether the OS
will attempt to recreate (or restart) it or not.

▶ The user presses the “Back” button or the activity calls
finish() to terminate. This indicates to the OS that it is a
normal termination of the activity and it does not need to be
recreated.

▶ The activity is going to the background, e.g.
▶ there is a configuration change (e.g. rotation of a device)
▶ there is a phone call to the user, therefore the phone

application activity needs to go to the foreground. The activity
might be terminated if memory becomes low.

The OS will recreate (or restart) the activity automatically.

Dimitris C. Dracopoulos 14/27

What the Operating System Saves

The OS saves automatically when a configuration change occurs or
the system clears memory:

▶ State of views with unique ID (android:id) such as text
entered into an EditText

▶ The Intent that started the activity and data in its extras

▶ Variables in composables which are declared as
rememberSaveable if the types of these values can be saved
in a Bundle. These will be restored during an activity OR
process recreation.

−→ The developer is responsible for saving other activity and user
progress data

Dimitris C. Dracopoulos 15/27

Saving instance state

Implement onSaveInstanceState() in the activity.

▶ Called by Android runtime when there is a possibility the
Activity may be destroyed

▶ Saves data only for this instance of the Activity during the
current session. If the application is restarted this cannot be
used

−→ onSaveInstanceState is not called when user explicitly
closes the activity (e.g. presses the Back button) or when finish()
is called. Use onPause() or onStop() instead

Dimitris C. Dracopoulos 16/27

Implementing onSaveInstanceState()

override fun onSaveInstanceState(outState: Bundle) {

super.onSaveInstanceState(outState)

outState.putInt("counter", counter)

}

Dimitris C. Dracopoulos 17/27

Restoring Instance State

Two ways to retrieve the saved Bundle data:

▶ In onCreate(Bundle mySavedState)

▶ Implement callback onRestoreInstanceState(Bundle

mySavedState) (this is called after onStart())

Dimitris C. Dracopoulos 18/27

What happens when an Application Restarts?

▶ When the user stops and restarts a new app session, the
Activity instance states are lost and the activities will revert to
their default appearance

▶ If you need to save user data between app sessions, use

1. Shared preferences
2. or a Database

Dimitris C. Dracopoulos 19/27

A Configuration Change Example

class MainActivity : ComponentActivity() {

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

setContent {

GUI()

}

}

Dimitris C. Dracopoulos 20/27

A Configuration Change Example (cont’d)

@Composable

fun GUI() {

var name by rememberSaveable{ mutableStateOf("") }

var counter by rememberSaveable { mutableStateOf(0)}

var button2_click_counter by rememberSaveable{ mutableStateOf(0) }

var background_colour = change_BackGroundColour(button2_click_counter)

Column (horizontalAlignment = Alignment.CenterHorizontally,

modifier = Modifier

.fillMaxSize()

.background(background_colour)) {

TextField(value = name, onValueChange = {

name = it

})

Text(text = "" + counter, fontSize = 30.sp)

Row {

Button(onClick = { ++counter }) {

Text("Increment")

}

Button(onClick = {

++button2_click_counter

background_colour = change_BackGroundColour(button2_click_counter)

}) {

Text("Change Background Colour")

}

}

}

}

Dimitris C. Dracopoulos 21/27

A Configuration Change Example (cont’d)

// returns a new colour based on an even or odd number of clicks

// the argument passed (counter) is the number of clicks

fun change_BackGroundColour(counter: Int): Color {

var bg_colour = Color.Gray

if (counter % 2 == 0) // even clicks change to green

bg_colour = Color.Green

else // odd clicks change to red

bg_colour = Color.Red

return bg_colour

}

}

Dimitris C. Dracopoulos 22/27

Restoring State using onSaveInstaceState
Modify the previous example by adding a new property to the
activity called score, the value of which is displayed on the top of
the UI.

▶ What happens when the device is rotated?
class MainActivity : ComponentActivity() {

var score = 0

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

setContent {

GUI()

}

}

@Composable

fun GUI() {

//

Column(

horizontalAlignment = Alignment.CenterHorizontally,

verticalArrangement = Arrangement.Center,

modifier = Modifier

.fillMaxSize()

.background(backgroundColour)

) {

Text("Score: $score")

TextField(

value = name, onValueChange = { name = it }

)

// ...

Dimitris C. Dracopoulos 23/27

Restoring State using onSaveInstaceState (cont’d)

Modify the previous code by editing the previous code to include
the following:
class MainActivity : ComponentActivity() {

var score = 0

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

if (savedInstanceState != null)

score = savedInstanceState.getInt("score_points", 0)

setContent {

GUI()

}

}

override fun onSaveInstanceState(outState: Bundle) {

super.onSaveInstanceState(outState)

outState.putInt("score_points", score)

}

Dimitris C. Dracopoulos 24/27

The Full Example with Restoration of State

package uk.ac.westminster.testapplication

import android.os.Bundle

import androidx.activity.ComponentActivity

import androidx.activity.compose.setContent

import androidx.compose.foundation.background

import androidx.compose.foundation.layout.Arrangement

import androidx.compose.foundation.layout.Column

import androidx.compose.foundation.layout.Row

import androidx.compose.foundation.layout.fillMaxSize

import androidx.compose.foundation.layout.fillMaxWidth

import androidx.compose.foundation.layout.padding

import androidx.compose.material3.Button

import androidx.compose.material3.Text

import androidx.compose.material3.TextField

import androidx.compose.runtime.Composable

import androidx.compose.runtime.getValue

import androidx.compose.runtime.mutableStateOf

import androidx.compose.runtime.saveable.rememberSaveable

import androidx.compose.runtime.setValue

import androidx.compose.ui.Alignment

import androidx.compose.ui.Modifier

import androidx.compose.ui.graphics.Color

import androidx.compose.ui.text.style.TextAlign

import androidx.compose.ui.unit.dp

import androidx.compose.ui.unit.sp

import kotlin.random.Random

Dimitris C. Dracopoulos 25/27

The Full Example with Restoration of State (cont’d)

class MainActivity : ComponentActivity() {

var score = 0

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

if (savedInstanceState != null)

score = savedInstanceState.getInt("score_points", 0)

setContent {

GUI()

}

}

override fun onSaveInstanceState(outState: Bundle) {

super.onSaveInstanceState(outState)

outState.putInt("score_points", score)

}

Dimitris C. Dracopoulos 26/27

The Full Example with Restoration of State (cont’d)

@Composable

fun GUI() {

var counter by rememberSaveable { mutableStateOf(0) }

var button2_click_counter by rememberSaveable { mutableStateOf(0) }

var backgroundColour = changeBackgroundColour(button2_click_counter)

var name by rememberSaveable { mutableStateOf("") }

Column (Modifier.background(backgroundColour)){

Text(

"Score: $score", textAlign = TextAlign.End,

modifier = Modifier.fillMaxWidth().padding(30.dp), fontSize = 24.sp

)

Column(

horizontalAlignment = Alignment.CenterHorizontally,

verticalArrangement = Arrangement.Center,

modifier = Modifier

.fillMaxSize()

) {

TextField(

value = name, onValueChange = { name = it }

)

Text(counter.toString(), fontSize = 30.sp)

Dimitris C. Dracopoulos 27/27

The Full Example with Restoration of State (cont’d)

Row {

Button(onClick = {

++counter

score += counter * Random.nextInt(100)

}) {

Text("Increment")

}

Button(onClick = {

++button2_click_counter

}) {

Text("Change Background Colour")

}

}

}

}

}

fun changeBackgroundColour(counter: Int): Color {

if (counter % 2 == 0)

return Color.Green

else

return Color.Red

}

}

