5COSC023W - MOBILE APPLICATION
DEVELOPMENT
Lecture 3: More on Kotlin - Anatomy of
Composables

Dr Dimitris C. Dracopoulos

Classes

class Employee (colour: String, n: String) {
val eyeColour: String = colour
var age: Int = 25
val name: String = n

override fun toString(): String {
return "name: $name, eyeColour: $eyeColour, age: $age"
¥
}

fun main() {
val el = Employee('"green", "John")
println(el)

Creating Class Properties Automatically

» Use var or val when you declare the parameters of the
constructor:

class Employee (val eyeColour: String,
var age: Int,
var name: String) {
override fun toString(): String {
return "name: $name, eyeColour: $eyeColour, age: $age"
}
}

fun main() {
val e2 = Employee("brown", 18, "Helen")
println(e2)

Secondary Constructors

Secondary constructors require the constructor keyword and
they should be defined inside the curly braces of the class.
» Each secondary constructors needs to call directly or indirectly
the primary constructor of the class using this keyword.
class Employee (var eyeColour: String,

var age: Int,
var name: String) {

var salary = 0

constructor (
eyeColour: String,

age: Int,
name: String,
sal: Int) : this(eyeColour, age, name) {

salary = sal

Secondary Constructors (cont'd)

override fun toString(): String {
return "name: $name, eyeColour: $eyeColour,
age: $age, salary: $salary"

}

fun main() {
val e2 = Employee("brown", 18, "Helen", 40000)
println(e2)

Data Classes

Classes which hold just data (not methods) can be created using
data classes.

data class Employee(val name:String, val age:Int)

fun main() {
var el = Employee("John", 22)
var e2 = Employee("John", 22)

println(el == e2)
}
Equality for data classes is automatically generated without
defining the equals methods (which you need to define for the
comparison of objects created from normal classes)

Default Values for Function Arguments

Function arguments can have an optional name and an optional
default value.

» The order of arguments can be changed if their names is used.

fun colour(red: Int = 0, green: Int = 0, blue:Int = 0) {

3

fun main() {
// default value for green is used, i.e. O
colour(blue = 255, red = 125)

Variable Number of Arguments

» Use the vararg keyword.

A\

The vararg parameter becomes an Array.

» A function definition can only specify one parameter as
vararg.

» Try to choose the last parameter of a function to be the

vararg.

fun foo(date: String, vararg names: String) {
println("date: $date")
for (n in names)
println(n)

fun main() {
foo("26th of February", "James", "Helen", "Joe", "Alice")

Lambda Expressions

Kotlin functions can be stored in variables, in data structures and
passed as arguments to other functions.

» Lambda expressions and anonymous functions are function
literals

» They can be treated as functions that are not declared but
passed as an expression when a function is required.

P> A lambda expression is always surrounded by curly braces.
» The body goes after the ->

// function foo accepts another function as an argument
fun foo(function_apply: (n: Int)->Int) {

var x1 = function_apply(3)

var x2 = function_apply(5)

var x3 = function_apply(10)

println("$x1, $x2, $x3")

fun main() {
foo({n -> n*n})
foo({n -> n + 1})

Passing lambdas as the last argument (Trailing Lambdas)

» If the last parameter of a function is a function, a lambda
expression passed as an argument can be placed outside the
parentheses

foo(){n -> nx*2}

» If the lambda expression is the only argument to that call, the
parentheses can be omitted:
foo{n -> n*2}

Lambdas with a Single Parameter

>

fun

fun

If there is only 1 parameter in the lambda expression, the
Kotlin compiler generates the name it for that parameter,
which means that you can skip the need for “‘n ->":
foo(function_apply: (n: Int)->Int) {

var x1 = function_apply(3)

var x2 = function_apply(5)

var x3 = function_apply(10)

println("$x1, $x2, $x3")
main() {

foo{it+2} // add 2 to the passed parameter
foo(i -> i+2) // equivalent to the above

Maps

fun main() {
var capitals = mapOf("Netherlands" to "Amsterdam",
"Hungary" to "Budapest",
"Finland" to "Helsinki")

println(capitals["Hungary"])
println(capitals.getValue("Finland"))

for ((key, value) in capitals)
println("$key -> $value")

for (entry in capitals)
println(entry.key + ":: " + entry.value)

Sets

Cannot contain duplicate elements.

fun main() {
var cities = mutableSetOf("London", "Paris",
"Berlin", "London",
"Paris")

for (c in cities)
print(c+ " ")
println()

cities += "Warsaw"
cities -= "Paris"

print ("Updated set contains: ")
for (c in cities)
print(c + " ")
}
The usual mathematical set operations (union, intersection,
difference and others) are also available.

Nullable References - An Attempt to fix Tony Hoare's
“Billion Dollar Mistake"

» By default, references cannot receive the value of null.
var s: String = null // Compiler error!
> A question mark ? needs to be appended to make a variable
nullable:
var s: String? = null // 0K
» A nullable type cannot be dereferenced:
var s2: String? = "abc"
s2.length // Compiler error!
» Use the safe call 7. to attempt to dereference a nullable
value:
var s2: String? = "abc"
s27.length // Will give back a value of null tf s2 is null
» Alternatively, use the non-null assertion operator !!

var s3: String? = "abc"
s3!'! // if null throws a NullPointerException

Comparing Variables

» Use == (or equals) for structural comparison
» Use === to check if 2 references point to the same object

For primitive types such as Int, === is the same as ==.

The When Expression

Similar to the switch in Java and other programming languages in
the C family.

fun translate(word: String): String =
when (word) {
"Bonjour" -> "Good Morning"
"Bonne Nuit" -> "Good Night"
"Dobré R&no" -> "Good Morning"
"Dobry Veler" -> "Good Evening"
else -> "Unknown word"

3

fun main() {
var meaning = translate("Bonjour")
println(meaning)

Access Specifiers

Similar usage to other programming languages supporting object
oriented programming but with different meaning.
When used for members (properties, functions) of a class:

> public: available to everyone

> private: available to the class only

> protected: subclasses can access and override these.

> internal: access only within the module where it is defined.

Default access is public.

» public and private can be used before the definition of a
class, function or variable (property).

In such cases the meaning of private is access only within the
same file.

Modules vs Packages

» Modules divide code at a higher level than packages.
> A library is often a single module consisting of multiple
packages.

» The way a project is divided into modules, depends on the
build system (e.g. gradle or maven).

The Anatomy of Composables

The Anatomy of Composables

» All composables are functions.

For example a Button defined in the library:

@Composable

public fun Button(
onClick: () -> Unit,
modifier: Modifier = Modifier,
enabled: Boolean = true,
shape: Shape = ButtonDefaults. shape,
colors: ButtonColors = ButtonDefaults. buttonColors(),
elevation: ButtonElevation? = ButtonDefaults. buttonElevation(),
border: BorderStroke? = null,
contentPadding: PaddingValues = ButtonDefaults. ContentPadding,
content: @Composable() (RowScope.() -> Unit)

): Unit

» Note that content is the last parameter passed to the
Button composable.

The Anatomy of Composables

» All composables are functions.

For example a Button defined in the library:

@Composable

public fun Button(
onClick: () -> Unit,
modifier: Modifier = Modifier,
enabled: Boolean = true,
shape: Shape = ButtonDefaults. shape,
colors: ButtonColors = ButtonDefaults. buttonColors(),
elevation: ButtonElevation? = ButtonDefaults. buttonElevation(),
border: BorderStroke? = null,
contentPadding: PaddingValues = ButtonDefaults. ContentPadding,
content: @Composable() (RowScope.() -> Unit)

): Unit

» Note that content is the last parameter passed to the
Button composable.

The Anatomy of the Button Composable

Example of usage:

Button(onClick = {results = calculate()},
modifier = Modifier.padding(top=10.dp),
content = {

Text ("Generate")
Text("Second text")
}

)

Using the trailing lambda technique, the above is equivalent to:
Button(onClick = {results = calculate()},

modifier = Modifier.padding(top=10.dp)

)

{

Text ("Generate")
Text ("Second line")

