
Dimitris C. Dracopoulos 1/15

5COSC023W - MOBILE APPLICATION
DEVELOPMENT

Lecture 2: Android Programming: Jetpack
Compose - Activities, Intents

Dr Dimitris C. Dracopoulos



Dimitris C. Dracopoulos 2/15

Android Programming



Dimitris C. Dracopoulos 3/15

Jetpack Compose - The Story

▶ Since the second half of 2023, Jetpack Compose is the
recommended way for the creation of the UI of Android
applications.

▶ Completely different way of doing things, not just simply the
UI.

▶ The whole code for an Android application needs to be
changed, not just the UI.



Dimitris C. Dracopoulos 4/15

The Views Way of Implementation

Still supported but Compose is the new recommended way.

▶ Every widget (e.g. Button, TextView) is a subclass of the
View class.

▶ All widgets are objects which are manipulated by calling their
methods and change their state (e.g. call the set method to
change the text of a TextView)

▶ The widget objects are passed around the program as
references in order to access and modify them in other parts
of the application.

▶ Classic way of object oriented programming: object are passed
to different parts of the code so they can be accessed and call
methods on them.



Dimitris C. Dracopoulos 5/15

Views vs Jetpack Compose

▶ Views approach: Widgets (e.g. buttons) are objects and we
need to call their methods to change what they display.

▶ Compose approach: Everything is based on Composable

functions which are responsible to emit one or more UI
components.

▶ Compose describe WHAT to draw, while View describe
HOW to draw UI elements.

▶ Declarative (Compose) UI definition vs Object Oriented
Programming way.



Dimitris C. Dracopoulos 6/15

The Compose Way of Implementation

▶ Composable functions are describing what UI elements to
draw.

▶ The functions are automatically called again (recomposition)
when they need to be redrawn because the state of the UI
elements model has changed (although UI elements are
stateless in theory)

▶ Many imports of classes (compared with Views) but more
efficient and less bug prone.

▶ A new way of thinking about implementation in Android
applications if you had previous experience.

▶ UI elements are functions, NOT objects (unlike Views)

▶ No XML is required for UI creation. All the UI is implemented
in code.



Dimitris C. Dracopoulos 7/15

Characteristics of Composable Functions

▶ Composable functions can only be called by other composable
functions.

▶ The exception to the above rule is the setContent function
which is the starting point of calling composable functions.

▶ Composable functions can call non-composable functions.

▶ Composable functions can be rendered and seen within the
editor by annotating them with @Preview.

▶ Composable functions annotated with @Preview should not
accept any parameters.



Dimitris C. Dracopoulos 8/15

Default Values for Function Arguments

Function arguments can have an optional name and an optional
default value.

▶ The order of arguments can be changed if their names is used.

fun colour(red: Int = 0, green: Int = 0, blue:Int = 0) {

}

fun main() {

// default value for green is used, i.e. 0

colour(blue = 255, red = 125)

}



Dimitris C. Dracopoulos 9/15

A Lottery Program

A lottery ticket consists of 6 unique numbers in the range between
1 and 59.
Write an Android application which calculates such a 6 lucky
random unique numbers that the user can play in the next lottery.
Every time a button is pressed a new set of unique numbers is
generated.



Dimitris C. Dracopoulos 10/15

The Lottery Program with Jetpack Compose

▶ When you create the project in Android Studio choose the
template “Empty Activity” and NOT “Empty Views Activity”.

The activity file:
package com.example.lotterycomposableapp
import androidx.activity.ComponentActivity
import androidx.activity.compose.setContent
import androidx.compose.foundation.layout.Column
import androidx.compose.foundation.layout.fillMaxSize
import androidx.compose.material3.Button
import androidx.compose.material3.Text
import androidx.compose.runtime.Composable
import androidx.compose.runtime.getValue
import androidx.compose.runtime.mutableStateOf
import androidx.compose.runtime.remember
import androidx.compose.runtime.setValue
import androidx.compose.ui.Alignment
import androidx.compose.ui.Modifier
import kotlin.random.Random



Dimitris C. Dracopoulos 11/15

The Activity code (cont’d)

class MainActivity : ComponentActivity() {
override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)
setContent {

displayNumbers()
}

}
}

@Composable
fun displayNumbers() {

var results by remember{mutableStateOf("")}
Column (

Modifier.fillMaxSize(),
horizontalAlignment = Alignment.CenterHorizontally) {
Text("results: " + results)
Button(onClick = {results = calculate() }) {

Text(text = "Generate")
}

}
}



Dimitris C. Dracopoulos 12/15

The Activity code (cont’d)

fun calculate(): String {
val numbers = mutableListOf<Int>()

while (numbers.size < 6) {
val new_number = 1 + Random.nextInt(59)
if (new_number !in numbers)

numbers.add(new_number)
}

var results = ""
for (i in numbers)

results += "" + i + " "

return results
}



Dimitris C. Dracopoulos 13/15

Adding State to a Composable

1. Example:

var results by remember{mutableStateOf("")}

to define a variable within a composable function (for example
a variable result).

2. Change the value of the variable within the composable
function, for example within the onClick method of a
Button composable or within the onChangeValue of a
TextField composable.



Dimitris C. Dracopoulos 14/15

Activities

▶ An Android component representing a whole window (screen)

▶ One Class

▶ To display a different screen a new Activity can be created
(or alternatively display new composables within the same
activity).

▶ An activity needs to have a layout (typically created in XML
or using Jetpack Compose. Using Views it can also be created
or modified dynamically as well, similarly with Jetpack
Compose).

▶ Important: All of the created activities should be declared in
the manifest of the application (file: AndroidManifest.xml).



Dimitris C. Dracopoulos 15/15

Intents

▶ A description of an operation to be performed

▶ Can be used to start other activities

▶ Can be explicit (starting a specific activity) or implicit (letting
the system or the user to choose which activity to start)

Example:

val in = Intent(this, NewActivity::class.java)
startActivity(in)


