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Android Programming
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Jetpack Compose - The Story

▶ Since the second half of 2023, Jetpack Compose is the
recommended way for the creation of the UI of Android
applications.

▶ Completely different way of doing things, not just simply the
UI.

▶ The whole code for an Android application needs to be
changed, not just the UI.



Dimitris C. Dracopoulos 4/15

The Views Way of Implementation

Still supported but Compose is the new recommended way.

▶ Every widget (e.g. Button, TextView) is a subclass of the
View class.

▶ All widgets are objects which are manipulated by calling their
methods and change their state (e.g. call the set method to
change the text of a TextView)

▶ The widget objects are passed around the program as
references in order to access and modify them in other parts
of the application.

▶ Classic way of object oriented programming: object are passed
to different parts of the code so they can be accessed and call
methods on them.
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Views vs Jetpack Compose

▶ Views approach: Widgets (e.g. buttons) are objects and we
need to call their methods to change what they display.

▶ Compose approach: Everything is based on Composable

functions which are responsible to emit one or more UI
components.

▶ Compose describe WHAT to draw, while View describe
HOW to draw UI elements.

▶ Declarative (Compose) UI definition vs Object Oriented
Programming way.
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The Compose Way of Implementation

▶ Composable functions are describing what UI elements to
draw.

▶ The functions are automatically called again (recomposition)
when they need to be redrawn because the state of the UI
elements model has changed (although UI elements are
stateless in theory)

▶ Many imports of classes (compared with Views) but more
efficient and less bug prone.

▶ A new way of thinking about implementation in Android
applications if you had previous experience.

▶ UI elements are functions, NOT objects (unlike Views)

▶ No XML is required for UI creation. All the UI is implemented
in code.
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Characteristics of Composable Functions

▶ Composable functions can only be called by other composable
functions.

▶ The exception to the above rule is the setContent function
which is the starting point of calling composable functions.

▶ Composable functions can call non-composable functions.

▶ Composable functions can be rendered and seen within the
editor by annotating them with @Preview.

▶ Composable functions annotated with @Preview should not
accept any parameters.
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Default Values for Function Arguments

Function arguments can have an optional name and an optional
default value.

▶ The order of arguments can be changed if their names is used.

fun colour(red: Int = 0, green: Int = 0, blue:Int = 0) {

}

fun main() {

// default value for green is used, i.e. 0

colour(blue = 255, red = 125)

}
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A Lottery Program

A lottery ticket consists of 6 unique numbers in the range between
1 and 59.
Write an Android application which calculates such a 6 lucky
random unique numbers that the user can play in the next lottery.
Every time a button is pressed a new set of unique numbers is
generated.
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The Lottery Program with Jetpack Compose

▶ When you create the project in Android Studio choose the
template “Empty Activity” and NOT “Empty Views Activity”.

The activity file:
package com.example.lotterycomposableapp
import androidx.activity.ComponentActivity
import androidx.activity.compose.setContent
import androidx.compose.foundation.layout.Column
import androidx.compose.foundation.layout.fillMaxSize
import androidx.compose.material3.Button
import androidx.compose.material3.Text
import androidx.compose.runtime.Composable
import androidx.compose.runtime.getValue
import androidx.compose.runtime.mutableStateOf
import androidx.compose.runtime.remember
import androidx.compose.runtime.setValue
import androidx.compose.ui.Alignment
import androidx.compose.ui.Modifier
import kotlin.random.Random
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The Activity code (cont’d)

class MainActivity : ComponentActivity() {
override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)
setContent {

displayNumbers()
}

}
}

@Composable
fun displayNumbers() {

var results by remember{mutableStateOf("")}
Column (

Modifier.fillMaxSize(),
horizontalAlignment = Alignment.CenterHorizontally) {
Text("results: " + results)
Button(onClick = {results = calculate() }) {

Text(text = "Generate")
}

}
}
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The Activity code (cont’d)

fun calculate(): String {
val numbers = mutableListOf<Int>()

while (numbers.size < 6) {
val new_number = 1 + Random.nextInt(59)
if (new_number !in numbers)

numbers.add(new_number)
}

var results = ""
for (i in numbers)

results += "" + i + " "

return results
}
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Adding State to a Composable

1. Example:

var results by remember{mutableStateOf("")}

to define a variable within a composable function (for example
a variable result).

2. Change the value of the variable within the composable
function, for example within the onClick method of a
Button composable or within the onChangeValue of a
TextField composable.
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Activities

▶ An Android component representing a whole window (screen)

▶ One Class

▶ To display a different screen a new Activity can be created
(or alternatively display new composables within the same
activity).

▶ An activity needs to have a layout (typically created in XML
or using Jetpack Compose. Using Views it can also be created
or modified dynamically as well, similarly with Jetpack
Compose).

▶ Important: All of the created activities should be declared in
the manifest of the application (file: AndroidManifest.xml).
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Intents

▶ A description of an operation to be performed

▶ Can be used to start other activities

▶ Can be explicit (starting a specific activity) or implicit (letting
the system or the user to choose which activity to start)

Example:

val in = Intent(this, NewActivity::class.java)
startActivity(in)


