5COSC023W - MOBILE APPLICATION
DEVELOPMENT

Lecture 1: Introduction to Android Programming
and Kotlin

Dr Dimitris C. Dracopoulos

Introduction to the Module

vVvyvyvVvyYvyyvyy

Syllabus

Lectures

Tutorials (Practicals)
Software

Assessment

Schedule

What is expected from you?

» Lecture Attendance

» Tutorial Attendance (actual not just swiping of card!)

» Completion of ALL Tutorial Exercises within the week (if not
possible within the tutorial session then on your own time).

» Code of Conduct

Code of Conduct

» Do not cheat on assignments (this is INDIVIDUAL work and
NOT the product of collaboration!):
» Discuss only general approaches not specific details of
implementation
» Do not take written notes on other’s work and do not
exchange code

» Cheating is reported to university and then it is out of the
module lecturers hands (independent committee decision
without the participation of the module tutors)

» Possible consequences:

» A mark of 0 for assignment
» A mark of 0 for the course
» A permanent note on student record
» Suspension/Expulsion from university

Code of Conduct (cont'ed)

» Any code found in the web or textbook and used in your work
should be properly referenced in comments within your code.

Academic Integrity

» The University of Westminster is committed to the highest
standards of academic integrity and honesty. Students are
expected to be familiar with these standards regarding
academic honesty and to uphold the policies of the University
in this respect. Students are particularly urged to familiarise
themselves with the provisions of the Academic Regulations
and in this case with Academic Misconduct Regulations
(https://www.westminster.ac.uk/sites/default/public-
files/general-documents/Section-10-Academic-Misconduct-
v2.pdf) and avoid any behaviour which could potentially
result in suspicions of cheating, plagiarism, misrepresentation
of facts and/or participation in an offence. Academic
dishonesty is a serious offence and can result in suspension or
expulsion from the University.

Why Kotlin?

» Recommended by Google for Android programming

» Java for Android is NOT obsolete and still supported by
Google!

» Some Kotlin features make it easier to use (at least for some
programmers)

> Java code can be called by Kotlin and Kotlin code can be
called by Java

» Kotlin is a hybrid programming language: it supports both
functional programming and object-oriented programming

How to Practice Kotlin outside Android Studio

For the purposes of practice your Kotlin knowledge and not for
producing a mobile application, you have the following options:
1. Use a Web browser with the following url and press the button
to run the code:
https://play.kotlinlang.org/
2. Install IntelliJ from:

https://www.jetbrains.com/idea/

3. Use the command line utilities: kotlinc, kotlin by installing
the kotlin package in your operating system.

https://play.kotlinlang.org/
https://www.jetbrains.com/idea/

Kotlin Basics

Variables

Identifiers can be used by using var and var:
val identifierl: Type = initialisation
var identifier2: Type = initialisation
Examples:

val hoursPerDay: Int = 24

var hoursWorkedThisMonth: Int = 110

» An identifier defined with val is constant and cannot be
changed:
hoursPerDay = 35 // invalid - compiler will give an error
hoursWorkedThisMonth = 222 // 0K - walid
» The compiler will do type inference if a type is omitted:

var colour = "red" // type String is inferred

> Note that Kotlin does not require a semicolon at the end of
an expression or statement!

Data Types

Byte
Short
Int
Long
Float
Double
String

VVvVvyVvVvYvVvyYVvYVYyYy

Boolean

Functions

Syntax:

fun functionName(argl: Typel, arg2: Type2, ...): ReturnType {
// ... body with lines of code
return result

}

Example:

fun sum(a: Int, b: Int, c: Int): Int {
var res:Int = a + b + c

return res

}
Usage:

var result = sum(5, 8, 9)
println(result)

Functions (cont’ed)

» If a function consists of a single expression the following
alternative syntax can be used:

fun functionName(argl: Typel, arg2: Type2, ...): ReturnType =
result

» In this case the return type can be omitted and it will be
automatically inferred.
fun sum(a: Int, b:Int) =
a+b
» If a function does not return anything, this can be declared
with the Unit type (equivalent to void in Java) or simply
omitting the return type:

fun abc(a: Int): Unit =
print(a)

Conditionals

if conditionals are expressions producing a result, which can then
be assigned to variables.

fun check(x: Int): String {
val message =
if (x < 0)
"x is negative"
else if (x >= 0 && x <=b)
"x is between O and 5"
else
"x is greater than 5"

return message

}

fun main() {
print(check(4))

}

The output is:

X is between 0 and 5

String Templates

A value can be inserted inside a string by:
» Using $ before an identifier.

» Placing an expression inside ${}.
fun main() {

var x = 5

println("The value of x is $x")
println("""${if (x >=0) "positive" else '"negative" }""")

}
The output is:

The value of x is 5
positive

» String literals can be enclosed within double or triple quotes.
Triple quotes literals can span across multiple lines.

Loops

Use either of:
» for
» while

> repeat

Loops (cont'ed)

Example:

fun main() {
for (x in "abcde")
println(x)

// using ranges
for (i in 1..10)
println(i)

// using ranges - upper bound value excluded
for (i in 1 until 10)
println(i)

var n = 1

while (n <= 10) {
print(" " + (n+1))
n +=1

}

println()
repeat (5) {
print("once more ")

}

Loops (cont'ed)

The output is:

H OO0 ~NOOd WNFEO QO TP

o

2345678910 11
once more once more once more once more once more

Lists

A list is a collection, a container which holds other objects.

» Use the 1ist0f and mutableListOf functions to create a
read-only and a mutable list respectively:

fun main() {
var a = 1list0f(5, 10, -1, 99, 133, 0)
println(al3]) // displays 99
//al2] = 22 // cannot modify a read-only list

var b = mutableList0f(4, 77, 1, 88, -2)
b[2] =5 // OK
b.add(5)

println(b)
print("size of b is " + b.size)

}
The output is:

99
(4, 77, 5, 88, -2, 5]
size of b is 6

The in Keyword

> in can be used in both loops and to check whether
“something” is a member of “something else”.

fun main() {
var a = list0f(5, 10, -1, 99, 133, 0)
println(10 in a) // it is there
println(il in a) // not in there!

for (¢ in "penguin")
print(c + "-")

}
The output is:

true
false
p-e-n-g-u-i-n-

Parameterised Types and Equality

Type parameters describe the type of containers:

var 11: List<Int> = 1ist0f(100, 5, 99)
val 12 = 1listO0f("abc", 8, 10)
val 13: List<Int> = listOf("abc", 8, 10) // Invalid-> comptiler error

val 14: List<Int> = 1ist0£(5,6,7)

// comparing objects

println(l1l == 14) // comparing contents -> true

println(l1l === 14) // comparing references (memory addresses) -> false

