
Dimitris C. Dracopoulos 1/33

5COSC019W - OBJECT ORIENTED
PROGRAMMING

Lecture 8: An Introduction to Java Threads
Part 1

Dr Dimitris C. Dracopoulos

Dimitris C. Dracopoulos 2/33

Why Threads?

Time sharing makes a computer system give the impression that
several things are executed simultaneously.
Unlike OS processes, threads:

I Are much more lightweight: they do not have the costly
overhead of processes (saving the program state, memory
contents, file descriptors, etc.)

I Use the same address space.

Dimitris C. Dracopoulos 3/33

Applications of Threads

Threads allow you to do many things at the same time. Typical
cases that this is desirable are:

I Interactive programs that never look “dead” to the user. For
example, one thread might be controlling and responding to a
GUI, while another is making the computations requested and
a third thread is doing file I/O, all for the same program.

I Some programs are easier to write if you split them into
threads.
For example in a client server system, the server can spawn a
new thread for each new request. This thread will be
responsible to fulfill each each request. Contrast this with the
alternative where a single threaded server has to keep track of
the state of each individual request.

I Some programs are amenable to parallel processing.
Examples: some sorting algorithms, matrix operations, etc.

Dimitris C. Dracopoulos 4/33

How to create a Java Thread

Two ways:

1. Extend the class Thread and implement the run() method :

class Worker extends Thread {

public void run() { ... }

}

Worker w = new Worker();

w.start();

2. Implement the Runnable interface (the class Thread is an
implementation of it):

class Sort implements Runnable {

public void run() { ... }

}

Sort s = new Sort();

Thread t1 = new Thread(s);

t1.start();

Dimitris C. Dracopoulos 5/33

Characteristics of the Runnable interface

If you implement a thread using the Runnable interface:

I You can only call the start() method of the Thread.

I You cannot explicitly call the other methods (e.g. sleep())
provided by class Thread:

public class example {

public static void main(String[] a) {

// alternative 1

ExtnOfThread t1 = new ExtnOfThread();

t1.start();

// alternative 2

Thread t2 = new Thread (new ImplOfRunnable());

t2.start();

}

}

Dimitris C. Dracopoulos 6/33

Characteristics of the Runnable interface (cont’ed)

class ExtnOfThread extends Thread {

public void run() {

System.out.println("Extension of Thread running");

try {sleep(1000);}

catch (InterruptedException ie) {return;}

}

}

class ImplOfRunnable implements Runnable {

public void run() {

System.out.println("Implementation of Runnable running");

// next two lines will not compile

// try {sleep(1000);}

// catch (InterruptedException ie) {return;}

}

}

Dimitris C. Dracopoulos 7/33

Characteristics of the Runnable interface (cont’ed)

I To do this, you must first create the thread object associated
with Runnable:

class ImplOfRunnable implements Runnable {

public void run() {

System.out.println("Implementation of Runnable" +

"running");

Thread t = Thread.currentThread();

try {t.sleep(1000);}

catch (InterruptedException ie) {return;}

}

}

Dimitris C. Dracopoulos 8/33

Thread Priorities and the Lifecycle of a Thread

I Threads have priorities.

I A thread with a higher priority will pre-empt another one with
lower priority. This means that if a thread with priority x is
running, then it will be pushed off the processor by another
thread with priority y > x .

I The developer can set the priority of a thread, since the only
thing he affects is his own program.

I Time slicing does not happen necessarily. This depends on the
OS scheduling algorithm, and effectively it means that a
running thread might not share the processor with threads of
equal priority.

I To ensure that other threads with equal priority will be given
the chance to run, yield() could be called periodically in
your thread. The scheduler is free to ignore this hint.

Dimitris C. Dracopoulos 9/33

Example of Thread Creation
class Coffee extends Thread {

public void run() {

while(true)

System.out.println("I like coffee");

}

}

class Tea extends Thread {

public void run() {

while(true)

System.out.println("I like tea");

}

}

public class drinks {

public static void main(String[] a) {

Coffee t1 = new Coffee();

t1.start();

new Tea().start(); // an anonymous thread

}

}

Dimitris C. Dracopoulos 10/33

Output:

I like coffee

I like coffee

I like tea

I like coffee

I like coffee

I like coffee

I like tea

I like coffee

I like coffee

I like coffee

I like coffee

I like coffee

I like coffee

I like coffee

I like tea

I like coffee

Dimitris C. Dracopoulos 11/33

Categories of Thread Programming

Four levels of difficulty based on the type of synchronisation
needed between threads:

I Unrelated Threads.

I Related but Unsynchronised Threads.

I Mutually-Exclusive Threads.

I Communicating Mutually-Exclusive Threads.

Dimitris C. Dracopoulos 12/33

Related but Unsynchronised Threads

An example is a client server system where the server spawns a
new thread for each client request.

This type can also be used to partition a large data set into smaller
subsets on which a different thread operates. For example to find
whether a given large number is prime one can split the range of
numbers searched and give the relevant interval to a particular
thread :

Dimitris C. Dracopoulos 13/33

class testRange extends Thread {

static long possPrime;

long from, to;

/* args: start of range of factors attempted and number to test */

testRange(int argFrom, long argpossPrime) {

possPrime = argpossPrime;

if (argFrom == 0)

from = 2;

else

from = argFrom;

to = argFrom + 99;

}

public void run() {

for (long i=from; i<=to && i<possPrime; i++)

if (possPrime % i == 0) { // i divides possPrime exactly

System.out.println(

"factor " + i + " found by thread " + getName());

break; // get out of for loop! - found a prime

}

}

}

Dimitris C. Dracopoulos 14/33

public class testPrime {

public static void main(String s[]) {

if (s.length!=1) {

System.out.println("usage: java testPrime somenumber");

System.exit(0);

}

long possPrime = Long.parseLong(s[0]);

int centuries = (int)(possPrime/100) +1;

for(int i=0;i<centuries;i++) {

new testRange(i*100, possPrime).start();

}

}

}

Dimitris C. Dracopoulos 15/33

Mutually Exclusive Threads

Threads operate on the same address space. We should make sure
that they do not try to modify simultaneously the same piece of
data (this is known as mutual exclusion).

Example: Simulate a steam boiler. Define the current reading of
the pressure and the safe limit for a pressure gauge. Create a
number of threads, each one of them looking at the current
reading and if it is within the allowed limits, it tries to increase the
pressure.

Dimitris C. Dracopoulos 16/33

public class p {

static int pressureGauge=0;

static final int safetyLimit = 20;

public static void main(String[]args) {

pressure[] p1 = new pressure[10];

for (int i=0; i<10; i++) {

p1[i] = new pressure();

p1[i].start();

}

try {

for (int i=0; i<10; i++)

p1[i].join();

} catch(Exception e){ }

System.out.println("gauge reads "

+ pressureGauge + ", safe limit is 20");

}

}

Dimitris C. Dracopoulos 17/33

// Now let's look at the pressure thread.

// This code simply checks if the current pressure reading

// is within safety limits, and if it is, it waits briefly,

// then increases the pressure. Here is the thread:

class pressure extends Thread {

void RaisePressure() {

if (p.pressureGauge < p.safetyLimit-15) {

// wait briefly to simulate some calculations

try{sleep(100);} catch (Exception e){}

p.pressureGauge += 15;

} else ; // pressure too high -- don't add to it.

}

public void run() {

RaisePressure();

}

}

The output when the program runs is:

gauge reads 150, safe limit is 20

Dimitris C. Dracopoulos 18/33

The “synchronized” keyword

To achieve mutual exclusion oven an entire class then a static

method of a class must be defined as synchronized:

public static synchronized void RaisePressure()

This means, that at any point in time only one thread can execute
this method and all other threads are waiting.

I To achieve this, the thread which executes this method,
obtains the “lock” of the whole class.

I There can be many threads executing the various parts of the
same class at the same time, but only one thread executing
the static synchronised method. E.g. there can be many
threads executing method foo() of a class at the same time
but only one Thread executing the method
RaisePressure().

Dimitris C. Dracopoulos 19/33

Synchronising non-static methods

One can define a non-static method to be synchronized.

I This implies that a thread which executes a non-static
synchronized method, will obtain the lock for the actual
object and not the entire class.

I When the thread having the lock of the object finishes the
execution of the synchronised method, it releases the lock and
another thread can obtain it and execute the synchronized
method.

I Again multiple threads can execute the same method of a
class as long as this is not synchronised. However at any point
in time, only one thread can execute any method defined as
synchronised. If there are 2 methods defined as synchronised
then at any point in time, only one thread can access any
portion of the synchronised code.

Dimitris C. Dracopoulos 20/33

Synchronising non-static methods (cont’ed)
Note that in the gauge example making the following change:
synchronized void RaisePressure() {

...

}

will not achieve mutual exclusion. This is because each of the 10
different threads will obtain the pressure object’s “lock”. This is
different in each thread.
The correct approach is to modify RaisePressure as:
// alternative, safe version!

static synchronised void RaisePressure() {

if (p.pressureGauge < p.safetyLimit-15) {

try {

sleep(100); // delay

}

catch (Exception e) {

}

p.pressureGauge += 15;

}

}

Dimitris C. Dracopoulos 21/33

Synchronising a portion of code

A portion of code can be synchronised by acquiring the lock of any
object. Then threads which require the the lock of the same object
will have to wait until the thread which has the lock releases it:

synchronized(O) {

....// some code

}

where O is any object. Only one thread will be able to execute the
code enclosed in a synchronized block at any point in time.
Therefore:

synchronized void foo() { ... }

is equivalent to:

void foo() {

synchronized(this) {

...

}

}

Dimitris C. Dracopoulos 22/33

More on Synchronisation

Synchronisation solves 2 problems:

I Thread interference (seen in the previous boiler example)

I Memory consistency: Modifications to data by a thread are
not visible (in time) by another thread.

If two or more threads attempt to update the same value
simultaneously a race condition can occur!

=⇒ A race condition occurs if the result of multiple threads
on shared data depends on the order in which the threads
are scheduled!

Dimitris C. Dracopoulos 23/33

Another example of Thread Interference

Thread interference can occur even if an operation is applied in a
single simple statement:

class Counter {

private int c = 0;

public void increment() {

c++;

}

public void decrement() {

c--;

}

public int value() {

return c;

}

}

Dimitris C. Dracopoulos 24/33

Another example of Thread Interference (cont’ed)

The bytecode that the virtual machine executes for each of the
above single statements (e.g. c++) could be composed by 3 steps:

1. Retrieve the current value of c

2. Increment the retrieved value by 1

3. Store the incremented value back in c

Thus, interleaving can occur even in this case. Two threads,
one executing c++ and the second c-- could result in a value of -1
or other value.

Dimitris C. Dracopoulos 25/33

Communicating Mutually Exclusive Threads
Synchronisation via the wait(), notify() calls.

I The wait() and notify() are always called from within
synchronised code.

1. The executing thread may notice that some data isn’t ready
for it yet, and wait() for it.

1.1 It executes wait() and goes to the wait list.
1.2 It releases the lock, allowing one thread to proceed from the

blocked (ready list). Threads on the blocked list are blocked
until they can get the synchronisation object, but otherwise
they are ready to run.

2. Eventually one thread will produce some data, then it will call
notify() waking a thread on the wait list, moving it to the
blocked (ready) list. If more than one threads exist in the wait
list, then the thread which will wake up will be chosen
randomly.

3. When the thread that just called notify() leaves the
method, it gives something else the chance to run.

Dimitris C. Dracopoulos 26/33

Communicating Mutually Exclusive Threads (cont’ed)

At any point in time there are:

I One running thread

I A number of threads waiting in the wait list. Threads which
execute wait() are the ones which are moved to this list.

I A number of threads waiting in the blocked (ready) list.
These are threads which are ready to run but wait for the lock
of the synchronisation object to be released.

Dimitris C. Dracopoulos 27/33

The Producer - Consumer Example

Communication is achieved by the following code:

// producer thread - assumes no limits in storing produced data

enter synchronized code (i.e. grab mutex lock)

produce_data();

notify();

leave synchronized code (i.e. release lock)

// consumer thread

enter synchronized code

while (no_data)

wait();

consume_the_data();

leave synchronized code

Dimitris C. Dracopoulos 28/33

// producer thread produces only one datum in a bounded buffer

enter synchronized code (i.e. grab mutex lock)

while (buffer_full)

wait();

produce_data();

notify();

leave synchronized code (i.e. release lock)

// consumer thread consumes one datum

enter synchronized code

while (no_data)

wait();

consume_the_data();

notify();

leave synchronized code

Dimitris C. Dracopoulos 29/33

The full Producer Consumer Example

public class plum {

public static void main(String args[]) {

Producer p = new Producer();

p.start();

Consumer c = new Consumer(p);

c.start();

}

}

class Producer extends Thread {

private String [] buffer = new String [8];

private int pi = 0; // produce index

private int gi = 0; // get index

public void run() {

// just keep producing

for(;;) produce();

}

Dimitris C. Dracopoulos 30/33

The full Producer Consumer Example (cont’ed)

private final long start = System.currentTimeMillis();

private final String banana() {

return "" + (int) (System.currentTimeMillis() - start);

}

synchronized void produce() {

// while there isn't room in the buffer

while (pi-gi+1 > buffer.length) {

try {wait();} catch(Exception e) {}

}

buffer[pi%8] = banana();

System.out.println("produced["+(pi%8)+"] "+buffer[pi%8]);

pi++;

notifyAll();

}

Dimitris C. Dracopoulos 31/33

The full Producer Consumer Example (cont’ed)

synchronized String consume(){

// while there's nothing left to take from the buffer

while (pi==gi) {

try {wait();} catch(Exception e) {}

}

notifyAll();

return buffer[gi++ % 8];

}

}

Dimitris C. Dracopoulos 32/33

The full Producer Consumer Example (cont’ed)

class Consumer extends Thread {

Producer whoIamTalkingTo;

// java idiom for a constructor

Consumer(Producer who) {

whoIamTalkingTo = who;

}

public void run() {

java.util.Random r = new java.util.Random();

for(;;) {

String result = whoIamTalkingTo.consume();

System.out.println("consumed: "+result);

// next line is just to make it run a bit slower.

int randomtime = Math.abs(r.nextInt() % 250);

try{sleep(randomtime);} catch(Exception e){}

}

}

}

Dimitris C. Dracopoulos 33/33

The output of this program is:

produced[0] 1

consumed: 1

produced[1] 8

produced[2] 9

produced[3] 10

produced[4] 10

produced[5] 10

produced[6] 10

produced[7] 10

produced[0] 11

consumed: 8

produced[1] 198

consumed: 9

produced[2] 318

consumed: 10

produced[3] 338

consumed: 10

