5COSCO019W - Solutions to Tutorial 3 Exercises

1 Implementing Constructors

class VendingMachine {
private int numCans;
private int tokens;

public VendingMachine() {
numCans = 10;
tokens = 0;

public VendingMachine(int cans) {
numCans = cans;
tokens = 0;

public void fillUp(int cans) {
numCans = numCans + cans;

¥

public void insertToken() {
numCans = numCans - 1;
tokens = tokens + 1;

public int getCanCount() {
return numCans;

3

public int getTokenCount() {
return tokens;

¥

2 Implementing a Class

class Employee {
String name;



double salary;

public Employee() {
}

public Employee(String n, double sal) {
name = n;
salary = sal;

public String getName() {
return name;

}

public double getSalary() {
return salary;

3

public class EmployeeTest {
public static void main(String[] args) {
Employee el = new Employee();
Employee e2 = new Employee("John Jones", 35000);
Employee e3 = new Employee("Ian Smith", 20000);

System.out.println("el: " + el.getName() + ", salary: " + el.getSalary());
System.out.println("e2: " + e2.getName() + ", salary: " + e2.getSalary());
System.out.println("e3: " + e3.getName() + ", salary: " + e3.getSalary());

When the program is run, it displays:

el: null, salary: 0.0
e2: John Jones, salary: 35000.0
e3: Tan Smith, salary: 20000.0

3 Designing and Implementing a Class

1. public class VotingMachine {
private int labourVotes; // number of wotes for Labour party
private int conservativeVotes; // number of votes for Conservatives party

public void voteLabour() {
++labourVotes;

3

public void voteConservatives() {



++conservativeVotes;

public int getLabourVotes() {
return labourVotes;

¥

public int getConservativeVotes() {
return conservativeVotes;

¥

// clear the state of the wvoting machine
public void clear() {

labourVotes = 0;

conservativeVotes = 0;

}

The implemented class can be tested using the following test class:

public class VotingMachineTest {
public static void main(String[] args) {
VotingMachine vMachine = new VotingMachine();

for (int i=1; i <= 1000; i++) {

/* flip a coin what to vote for - wote for each party
with 504 probability */

double flip = Math.random();

if (flip <= 0.5)
vMachine.votelLabour () ;

else
vMachine.voteConservatives();

// print results
System.out.println("Election results");

System.out.println("-------—=--——-—- "5
System.out.println("Labour received: " + vMachine.getLabourVotes());
System.out.println("Conservatives received: " +

vMachine.getConservativeVotes());

}

2. The biased version of the VotingMachine (biased towards Labour) is:

// Biased (unfatir) wverstion of voting machine
public class VotingMachine {
private int labourVotes; // number of wotes for Labour party
private int conservativeVotes; // number of votes for Conservatives party



public void voteLabour() {
++labourVotes;
labourVotes += (int) 3*Math.random();

public void voteConservatives() {
++conservativeVotes;

}

public int getLabourVotes() {
return labourVotes;

}

public int getConservativeVotes() {
return conservativeVotes;

¥

// clear the state of the voting machine
public void clear() {

labourVotes = 0;

conservativeVotes = O;

4 Objects are Copied by Reference

The output of the program is:

After mutate() is called, colour of cat cl is: Pink
After creation of cat c2

Memory address of object cl is: Cat@923e30

Memory address of object c2 is: Cat@130c19b

After assignment c2 = cl;
Memory address of object cl is: Cat@923e30
Memory address of object c2 is: Cat@923e30

After c2.setColour("Yellow")
Colour of cl1 is: Yellow
Colour of c2 is: Yellow

Inside Cat.create(), address of created cat object is:

Address of c3 is: Cat@1f6a7b9

Cat@1£f6a7b9



5 Object Comparison

When the new keyword is not used to create a String object then Java is using a pool of constant
strings to optimise space. This means a new object will not be re-created but it will be reused
from the pool of Java strings.

6 The null keyword

During execution an exception occurs:

Exception in thread "main" java.lang.NullPointerException
at NullObjectsTest.main(NullObjectsTest.java:4)

A reference variable must point to an object before attempting to access fields or call methods
on the object. Since s contains the value null, method toUpperCase() cannot be called on
null and an exception will be generated during running the program

7 Overloading Methods

1. public Car(String licensePlatel, double maxSpeedl, double speedl) {
this.licensePlate = licensePlatel;
this.speed = 0.0;
if (maxSpeedl >= 0.0) {
maxSpeed = maxSpeedl;

}
else {

maxSpeed = 0.0;
}

// set speed according to the wvalue of passed argument
if (speedl < 0)
speed = 0;
else if (speedl > maxSpeed)
speed = maxSpeed;
else
speed = speedl;

}
2. // print the details of the car
public void print() {
System.out.println("Current speed: " + speed + "\nMax speed: " +
maxSpeed + "\nLicence: " + licensePlate);
}

3. public class CarTest {
public static void main(String[] args) {



Car carl = new Car("K123wMI", 150.0);
carl.print();

Car car2 = new Car("L777ALA", 120.0, 80.0);
car2.print () ;

Car car3 = new Car("F180AST", 180.0, 40.0);
car3.print();

8 Challenge: Designing and Implementing Classes - The US
Postal Service

This is an optional challenge exercise. If you attempt this and if you have any doubts about
your solution, you could show this to your tutor.



	Implementing Constructors
	Implementing a Class
	Designing and Implementing a Class
	Objects are Copied by Reference
	Object Comparison
	The null keyword
	Overloading Methods
	Challenge: Designing and Implementing Classes - The US Postal Service

