5COSCO019W - Solutions to Tutorial 3 Exercises

1 Implementing Constructors

class VendingMachine {
private int numCans;
private int tokens;

public VendingMachine() {
numCans = 10;
tokens = 0;

public VendingMachine(int cans) {
numCans = cans;
tokens = 0;

public void fillUp(int cans) {
numCans = numCans + cans;

¥

public void insertToken() {
numCans = numCans - 1;
tokens = tokens + 1;

public int getCanCount() {
return numCans;

3

public int getTokenCount() {
return tokens;

¥

2 Implementing a Class

class Employee {
String name;



double salary;

public Employee() {
}

public Employee(String n, double sal) {
name = n;
salary = sal;

public String getName() {
return name;

}

public double getSalary() {
return salary;

3

public class EmployeeTest {
public static void main(String[] args) {
Employee el = new Employee();
Employee e2 = new Employee("John Jones", 35000);
Employee e3 = new Employee("Ian Smith", 20000);

System.out.println("el: " + el.getName() + ", salary: " + el.getSalary());
System.out.println("e2: " + e2.getName() + ", salary: " + e2.getSalary());
System.out.println("e3: " + e3.getName() + ", salary: " + e3.getSalary());

When the program is run, it displays:

el: null, salary: 0.0
e2: John Jones, salary: 35000.0
e3: Tan Smith, salary: 20000.0

3 Designing and Implementing a Class

1. public class VotingMachine {
private int labourVotes; // number of wotes for Labour party
private int conservativeVotes; // number of votes for Conservatives party

public void voteLabour() {
++labourVotes;

3

public void voteConservatives() {



++conservativeVotes;

public int getLabourVotes() {
return labourVotes;

¥

public int getConservativeVotes() {
return conservativeVotes;

¥

// clear the state of the wvoting machine
public void clear() {

labourVotes = 0;

conservativeVotes = 0;

}

The implemented class can be tested using the following test class:

public class VotingMachineTest {
public static void main(String[] args) {
VotingMachine vMachine = new VotingMachine();

for (int i=1; i <= 1000; i++) {

/* flip a coin what to vote for - wote for each party
with 504 probability */

double flip = Math.random();

if (flip <= 0.5)
vMachine.votelLabour () ;

else
vMachine.voteConservatives();

// print results
System.out.println("Election results");

System.out.println("-------—=--——-—- "5
System.out.println("Labour received: " + vMachine.getLabourVotes());
System.out.println("Conservatives received: " +

vMachine.getConservativeVotes());

}

2. The biased version of the VotingMachine (biased towards Labour) is:

// Biased (unfatir) wverstion of voting machine
public class VotingMachine {
private int labourVotes; // number of wotes for Labour party
private int conservativeVotes; // number of votes for Conservatives party



public void voteLabour() {
++labourVotes;
labourVotes += (int) 3*Math.random();

public void voteConservatives() {
++conservativeVotes;

}

public int getLabourVotes() {
return labourVotes;

}

public int getConservativeVotes() {
return conservativeVotes;

¥

// clear the state of the voting machine
public void clear() {

labourVotes = 0;

conservativeVotes = O;

4 Objects are Copied by Reference

The output of the program is:

After mutate() is called, colour of cat cl is: Pink
After creation of cat c2

Memory address of object cl is: Cat@923e30

Memory address of object c2 is: Cat@130c19b

After assignment c2 = cl;
Memory address of object cl is: Cat@923e30
Memory address of object c2 is: Cat@923e30

After c2.setColour("Yellow")
Colour of cl1 is: Yellow
Colour of c2 is: Yellow

Inside Cat.create(), address of created cat object is:

Address of c3 is: Cat@1f6a7b9

Cat@1£f6a7b9



5 Object Comparison

When the new keyword is not used to create a String object then Java is using a pool of constant
strings to optimise space. This means a new object will not be re-created but it will be reused
from the pool of Java strings.

6 The null keyword

During execution an exception occurs:

Exception in thread "main" java.lang.NullPointerException
at NullObjectsTest.main(NullObjectsTest.java:4)

A reference variable must point to an object before attempting to access fields or call methods
on the object. Since s contains the value null, method toUpperCase() cannot be called on
null and an exception will be generated during running the program

7 Overloading Methods

1. public Car(String licensePlatel, double maxSpeedl, double speedl) {
this.licensePlate = licensePlatel;
this.speed = 0.0;
if (maxSpeedl >= 0.0) {
maxSpeed = maxSpeedl;

}
else {

maxSpeed = 0.0;
}

// set speed according to the wvalue of passed argument
if (speedl < 0)
speed = 0;
else if (speedl > maxSpeed)
speed = maxSpeed;
else
speed = speedl;

}
2. // print the details of the car
public void print() {
System.out.println("Current speed: " + speed + "\nMax speed: " +
maxSpeed + "\nLicence: " + licensePlate);
}

3. public class CarTest {
public static void main(String[] args) {



Car carl = new Car("K123wMI", 150.0);
carl.print();

Car car2 = new Car("L777ALA", 120.0, 80.0);
car2.print () ;

Car car3 = new Car("F180AST", 180.0, 40.0);
car3.print();

8 Challenge: Designing and Implementing Classes - The US
Postal Service

This is an optional challenge exercise. If you attempt this and if you have any doubts about
your solution, you could show this to your tutor.
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