
Dimitris C. Dracopoulos 1/17

5COSC019W - OBJECT ORIENTED
PROGRAMMING

Lecture 3: Abstract Classes - Interfaces - Access
Specifiers - Polymorphism

Dr Dimitris C. Dracopoulos



Dimitris C. Dracopoulos 2/17

Interfaces

An interface is a class which does not have method
implementations, but just defines a set of method signatures which
have to be implemented by a subclass.
An interface is used:

I To define the set of public methods (operations) that an
implemented class provides.



Dimitris C. Dracopoulos 2/17

Interfaces

An interface is a class which does not have method
implementations, but just defines a set of method signatures which
have to be implemented by a subclass.
An interface is used:

I To define the set of public methods (operations) that an
implemented class provides.



Dimitris C. Dracopoulos 2/17

Interfaces

An interface is a class which does not have method
implementations, but just defines a set of method signatures which
have to be implemented by a subclass.
An interface is used:

I To define the set of public methods (operations) that an
implemented class provides.



Dimitris C. Dracopoulos 3/17

Example

import java.util.*;

interface Game {

int computeScore();

void printInstructions(); // how to play the game

}

class BlackJack implements Game {

public int computeScore() {

System.out.println("BlackJack computeScore() called");

Random randomGenerator = new Random();

int score = randomGenerator.nextInt(22);

return score;

}

public void printInstructions() {

System.out.println("BlackJack printInstructions() called");

}

public int getNumberOfCards() {

return 52;

}

}



Dimitris C. Dracopoulos 3/17

Example

import java.util.*;

interface Game {

int computeScore();

void printInstructions(); // how to play the game

}

class BlackJack implements Game {

public int computeScore() {

System.out.println("BlackJack computeScore() called");

Random randomGenerator = new Random();

int score = randomGenerator.nextInt(22);

return score;

}

public void printInstructions() {

System.out.println("BlackJack printInstructions() called");

}

public int getNumberOfCards() {

return 52;

}

}



Dimitris C. Dracopoulos 3/17

Example

import java.util.*;

interface Game {

int computeScore();

void printInstructions(); // how to play the game

}

class BlackJack implements Game {

public int computeScore() {

System.out.println("BlackJack computeScore() called");

Random randomGenerator = new Random();

int score = randomGenerator.nextInt(22);

return score;

}

public void printInstructions() {

System.out.println("BlackJack printInstructions() called");

}

public int getNumberOfCards() {

return 52;

}

}



Dimitris C. Dracopoulos 3/17

Example

import java.util.*;

interface Game {

int computeScore();

void printInstructions(); // how to play the game

}

class BlackJack implements Game {

public int computeScore() {

System.out.println("BlackJack computeScore() called");

Random randomGenerator = new Random();

int score = randomGenerator.nextInt(22);

return score;

}

public void printInstructions() {

System.out.println("BlackJack printInstructions() called");

}

public int getNumberOfCards() {

return 52;

}

}



Dimitris C. Dracopoulos 3/17

Example

import java.util.*;

interface Game {

int computeScore();

void printInstructions(); // how to play the game

}

class BlackJack implements Game {

public int computeScore() {

System.out.println("BlackJack computeScore() called");

Random randomGenerator = new Random();

int score = randomGenerator.nextInt(22);

return score;

}

public void printInstructions() {

System.out.println("BlackJack printInstructions() called");

}

public int getNumberOfCards() {

return 52;

}

}



Dimitris C. Dracopoulos 4/17

class ComputerGame implements Game {

String platform;

public ComputerGame(String platform) {

this.platform = platform;

}

public int computeScore() {

System.out.println("ComputerGame computeScore() called");

return 100; // buggy game, always returns 100

}

public void printInstructions() {

System.out.println("ComputerGame printInstructions() called");

}

public String getPlatform() {

return platform;

}

}



Dimitris C. Dracopoulos 4/17

class ComputerGame implements Game {

String platform;

public ComputerGame(String platform) {

this.platform = platform;

}

public int computeScore() {

System.out.println("ComputerGame computeScore() called");

return 100; // buggy game, always returns 100

}

public void printInstructions() {

System.out.println("ComputerGame printInstructions() called");

}

public String getPlatform() {

return platform;

}

}



Dimitris C. Dracopoulos 4/17

class ComputerGame implements Game {

String platform;

public ComputerGame(String platform) {

this.platform = platform;

}

public int computeScore() {

System.out.println("ComputerGame computeScore() called");

return 100; // buggy game, always returns 100

}

public void printInstructions() {

System.out.println("ComputerGame printInstructions() called");

}

public String getPlatform() {

return platform;

}

}



Dimitris C. Dracopoulos 4/17

class ComputerGame implements Game {

String platform;

public ComputerGame(String platform) {

this.platform = platform;

}

public int computeScore() {

System.out.println("ComputerGame computeScore() called");

return 100; // buggy game, always returns 100

}

public void printInstructions() {

System.out.println("ComputerGame printInstructions() called");

}

public String getPlatform() {

return platform;

}

}



Dimitris C. Dracopoulos 4/17

class ComputerGame implements Game {

String platform;

public ComputerGame(String platform) {

this.platform = platform;

}

public int computeScore() {

System.out.println("ComputerGame computeScore() called");

return 100; // buggy game, always returns 100

}

public void printInstructions() {

System.out.println("ComputerGame printInstructions() called");

}

public String getPlatform() {

return platform;

}

}



Dimitris C. Dracopoulos 4/17

class ComputerGame implements Game {

String platform;

public ComputerGame(String platform) {

this.platform = platform;

}

public int computeScore() {

System.out.println("ComputerGame computeScore() called");

return 100; // buggy game, always returns 100

}

public void printInstructions() {

System.out.println("ComputerGame printInstructions() called");

}

public String getPlatform() {

return platform;

}

}



Dimitris C. Dracopoulos 5/17

public class GameTest {

public static void main(String[] args) {

ComputerGame g1 = new ComputerGame("Linux");

System.out.println("Score: " + g1.computeScore());

g1.printInstructions();

BlackJack g2 = new BlackJack();

System.out.println("Score: " + g2.computeScore());

g2.printInstructions();

}

}

The above program displays:

ComputerGame computeScore() called

Score: 100

ComputerGame printInstructions() called

BlackJack computeScore() called

Score: 11

BlackJack printInstructions() called



Dimitris C. Dracopoulos 5/17

public class GameTest {

public static void main(String[] args) {

ComputerGame g1 = new ComputerGame("Linux");

System.out.println("Score: " + g1.computeScore());

g1.printInstructions();

BlackJack g2 = new BlackJack();

System.out.println("Score: " + g2.computeScore());

g2.printInstructions();

}

}

The above program displays:

ComputerGame computeScore() called

Score: 100

ComputerGame printInstructions() called

BlackJack computeScore() called

Score: 11

BlackJack printInstructions() called



Dimitris C. Dracopoulos 5/17

public class GameTest {

public static void main(String[] args) {

ComputerGame g1 = new ComputerGame("Linux");

System.out.println("Score: " + g1.computeScore());

g1.printInstructions();

BlackJack g2 = new BlackJack();

System.out.println("Score: " + g2.computeScore());

g2.printInstructions();

}

}

The above program displays:

ComputerGame computeScore() called

Score: 100

ComputerGame printInstructions() called

BlackJack computeScore() called

Score: 11

BlackJack printInstructions() called



Dimitris C. Dracopoulos 6/17

Default Methods in Interfaces (Java 8 onwards)

Java 8 introduced default and static methods in interfaces.

I A default method provides an implementation (body).

I This provides a mechanism for multiple inheritance of
implementation (not state) in Java.

interface Animal {

default void foo() {

// ... implementation

}

}



Dimitris C. Dracopoulos 6/17

Default Methods in Interfaces (Java 8 onwards)

Java 8 introduced default and static methods in interfaces.

I A default method provides an implementation (body).

I This provides a mechanism for multiple inheritance of
implementation (not state) in Java.

interface Animal {

default void foo() {

// ... implementation

}

}



Dimitris C. Dracopoulos 6/17

Default Methods in Interfaces (Java 8 onwards)

Java 8 introduced default and static methods in interfaces.

I A default method provides an implementation (body).

I This provides a mechanism for multiple inheritance of
implementation (not state) in Java.

interface Animal {

default void foo() {

// ... implementation

}

}



Dimitris C. Dracopoulos 6/17

Default Methods in Interfaces (Java 8 onwards)

Java 8 introduced default and static methods in interfaces.

I A default method provides an implementation (body).

I This provides a mechanism for multiple inheritance of
implementation (not state) in Java.

interface Animal {

default void foo() {

// ... implementation

}

}



Dimitris C. Dracopoulos 7/17

Default Methods - Rules to resolve ambiguity

When the same method is inherited more than once in Java 8, the
compile attempts to infer which version to use by the following
rules:

1. A class (or abstract class) wins over an interface. If the same
method is inherited from a parent class (or an abstract class)
and an interface (the default method), the method of the
class will be used.

2. A subtype wins. If a method is overridden in an interface then
the parent interface implementation is “forgotten”.

3. If two or more independently defined default methods conflict,
or a default method conflicts with an abstract method (i.e. a
non-default method), then the Java compiler produces a
compiler error. In this case, you have to:
I override the method in the class which implements the

interfaces. In the overriden implementation you could choose
to invoke one of the methods in the parent interfaces by using
the super keyword.



Dimitris C. Dracopoulos 7/17

Default Methods - Rules to resolve ambiguity

When the same method is inherited more than once in Java 8, the
compile attempts to infer which version to use by the following
rules:

1. A class (or abstract class) wins over an interface. If the same
method is inherited from a parent class (or an abstract class)
and an interface (the default method), the method of the
class will be used.

2. A subtype wins. If a method is overridden in an interface then
the parent interface implementation is “forgotten”.

3. If two or more independently defined default methods conflict,
or a default method conflicts with an abstract method (i.e. a
non-default method), then the Java compiler produces a
compiler error. In this case, you have to:
I override the method in the class which implements the

interfaces. In the overriden implementation you could choose
to invoke one of the methods in the parent interfaces by using
the super keyword.



Dimitris C. Dracopoulos 7/17

Default Methods - Rules to resolve ambiguity

When the same method is inherited more than once in Java 8, the
compile attempts to infer which version to use by the following
rules:

1. A class (or abstract class) wins over an interface. If the same
method is inherited from a parent class (or an abstract class)
and an interface (the default method), the method of the
class will be used.

2. A subtype wins. If a method is overridden in an interface then
the parent interface implementation is “forgotten”.

3. If two or more independently defined default methods conflict,
or a default method conflicts with an abstract method (i.e. a
non-default method), then the Java compiler produces a
compiler error. In this case, you have to:
I override the method in the class which implements the

interfaces. In the overriden implementation you could choose
to invoke one of the methods in the parent interfaces by using
the super keyword.



Dimitris C. Dracopoulos 7/17

Default Methods - Rules to resolve ambiguity

When the same method is inherited more than once in Java 8, the
compile attempts to infer which version to use by the following
rules:

1. A class (or abstract class) wins over an interface. If the same
method is inherited from a parent class (or an abstract class)
and an interface (the default method), the method of the
class will be used.

2. A subtype wins. If a method is overridden in an interface then
the parent interface implementation is “forgotten”.

3. If two or more independently defined default methods conflict,
or a default method conflicts with an abstract method (i.e. a
non-default method), then the Java compiler produces a
compiler error. In this case, you have to:
I override the method in the class which implements the

interfaces. In the overriden implementation you could choose
to invoke one of the methods in the parent interfaces by using
the super keyword.



Dimitris C. Dracopoulos 7/17

Default Methods - Rules to resolve ambiguity

When the same method is inherited more than once in Java 8, the
compile attempts to infer which version to use by the following
rules:

1. A class (or abstract class) wins over an interface. If the same
method is inherited from a parent class (or an abstract class)
and an interface (the default method), the method of the
class will be used.

2. A subtype wins. If a method is overridden in an interface then
the parent interface implementation is “forgotten”.

3. If two or more independently defined default methods conflict,
or a default method conflicts with an abstract method (i.e. a
non-default method), then the Java compiler produces a
compiler error. In this case, you have to:
I override the method in the class which implements the

interfaces. In the overriden implementation you could choose
to invoke one of the methods in the parent interfaces by using
the super keyword.



Dimitris C. Dracopoulos 7/17

Default Methods - Rules to resolve ambiguity

When the same method is inherited more than once in Java 8, the
compile attempts to infer which version to use by the following
rules:

1. A class (or abstract class) wins over an interface. If the same
method is inherited from a parent class (or an abstract class)
and an interface (the default method), the method of the
class will be used.

2. A subtype wins. If a method is overridden in an interface then
the parent interface implementation is “forgotten”.

3. If two or more independently defined default methods conflict,
or a default method conflicts with an abstract method (i.e. a
non-default method), then the Java compiler produces a
compiler error. In this case, you have to:
I override the method in the class which implements the

interfaces. In the overriden implementation you could choose
to invoke one of the methods in the parent interfaces by using
the super keyword.



Dimitris C. Dracopoulos 7/17

Default Methods - Rules to resolve ambiguity

When the same method is inherited more than once in Java 8, the
compile attempts to infer which version to use by the following
rules:

1. A class (or abstract class) wins over an interface. If the same
method is inherited from a parent class (or an abstract class)
and an interface (the default method), the method of the
class will be used.

2. A subtype wins. If a method is overridden in an interface then
the parent interface implementation is “forgotten”.

3. If two or more independently defined default methods conflict,
or a default method conflicts with an abstract method (i.e. a
non-default method), then the Java compiler produces a
compiler error. In this case, you have to:
I override the method in the class which implements the

interfaces. In the overriden implementation you could choose
to invoke one of the methods in the parent interfaces by using
the super keyword.



Dimitris C. Dracopoulos 7/17

Default Methods - Rules to resolve ambiguity

When the same method is inherited more than once in Java 8, the
compile attempts to infer which version to use by the following
rules:

1. A class (or abstract class) wins over an interface. If the same
method is inherited from a parent class (or an abstract class)
and an interface (the default method), the method of the
class will be used.

2. A subtype wins. If a method is overridden in an interface then
the parent interface implementation is “forgotten”.

3. If two or more independently defined default methods conflict,
or a default method conflicts with an abstract method (i.e. a
non-default method), then the Java compiler produces a
compiler error. In this case, you have to:
I override the method in the class which implements the

interfaces. In the overriden implementation you could choose
to invoke one of the methods in the parent interfaces by using
the super keyword.



Dimitris C. Dracopoulos 8/17

Example
interface Animal {

default void foo() {

// ... implementation

}

}

interface Mammal {

default void foo() {

// ... implementation

}

}

class Dog implements Animal, Mammal {

public void foo() {

// invoke the Animal's version of foo()

Animal.super.foo();

// ... then do something more

}

}



Dimitris C. Dracopoulos 8/17

Example
interface Animal {

default void foo() {

// ... implementation

}

}

interface Mammal {

default void foo() {

// ... implementation

}

}

class Dog implements Animal, Mammal {

public void foo() {

// invoke the Animal's version of foo()

Animal.super.foo();

// ... then do something more

}

}



Dimitris C. Dracopoulos 8/17

Example
interface Animal {

default void foo() {

// ... implementation

}

}

interface Mammal {

default void foo() {

// ... implementation

}

}

class Dog implements Animal, Mammal {

public void foo() {

// invoke the Animal's version of foo()

Animal.super.foo();

// ... then do something more

}

}



Dimitris C. Dracopoulos 8/17

Example
interface Animal {

default void foo() {

// ... implementation

}

}

interface Mammal {

default void foo() {

// ... implementation

}

}

class Dog implements Animal, Mammal {

public void foo() {

// invoke the Animal's version of foo()

Animal.super.foo();

// ... then do something more

}

}



Dimitris C. Dracopoulos 8/17

Example
interface Animal {

default void foo() {

// ... implementation

}

}

interface Mammal {

default void foo() {

// ... implementation

}

}

class Dog implements Animal, Mammal {

public void foo() {

// invoke the Animal's version of foo()

Animal.super.foo();

// ... then do something more

}

}



Dimitris C. Dracopoulos 9/17

Abstract Classes

An abstract class is a class which cannot be instantiated (i.e.
objects of it cannot be created), and has one or more methods
without implementation (abstract methods).
Example:

abstract class Instrument {

String manufacturer;

public abstract void play();

public void setManufacturer(String m) {

manufacturer = m;

}

public String getManufacturer() {

return manufacturer;

}

}



Dimitris C. Dracopoulos 9/17

Abstract Classes

An abstract class is a class which cannot be instantiated (i.e.
objects of it cannot be created), and has one or more methods
without implementation (abstract methods).
Example:

abstract class Instrument {

String manufacturer;

public abstract void play();

public void setManufacturer(String m) {

manufacturer = m;

}

public String getManufacturer() {

return manufacturer;

}

}



Dimitris C. Dracopoulos 9/17

Abstract Classes

An abstract class is a class which cannot be instantiated (i.e.
objects of it cannot be created), and has one or more methods
without implementation (abstract methods).
Example:

abstract class Instrument {

String manufacturer;

public abstract void play();

public void setManufacturer(String m) {

manufacturer = m;

}

public String getManufacturer() {

return manufacturer;

}

}



Dimitris C. Dracopoulos 9/17

Abstract Classes

An abstract class is a class which cannot be instantiated (i.e.
objects of it cannot be created), and has one or more methods
without implementation (abstract methods).
Example:

abstract class Instrument {

String manufacturer;

public abstract void play();

public void setManufacturer(String m) {

manufacturer = m;

}

public String getManufacturer() {

return manufacturer;

}

}



Dimitris C. Dracopoulos 10/17

class Violin extends Instrument {

public void play() {

System.out.println("Violin's melody");

}

}

class Guitar extends Instrument {

public void play() {

System.out.println("Guitar music");

}

}

public class InstrumentTest {

public static void main(String[] args) {

// Instrument i1 = new Instrument(); // Error! Cannot instantiate Instrument

Violin i2 = new Violin();

Guitar i3 = new Guitar();

i2.play();

i3.play();

}

}



Dimitris C. Dracopoulos 10/17

class Violin extends Instrument {

public void play() {

System.out.println("Violin's melody");

}

}

class Guitar extends Instrument {

public void play() {

System.out.println("Guitar music");

}

}

public class InstrumentTest {

public static void main(String[] args) {

// Instrument i1 = new Instrument(); // Error! Cannot instantiate Instrument

Violin i2 = new Violin();

Guitar i3 = new Guitar();

i2.play();

i3.play();

}

}



Dimitris C. Dracopoulos 10/17

class Violin extends Instrument {

public void play() {

System.out.println("Violin's melody");

}

}

class Guitar extends Instrument {

public void play() {

System.out.println("Guitar music");

}

}

public class InstrumentTest {

public static void main(String[] args) {

// Instrument i1 = new Instrument(); // Error! Cannot instantiate Instrument

Violin i2 = new Violin();

Guitar i3 = new Guitar();

i2.play();

i3.play();

}

}



Dimitris C. Dracopoulos 10/17

class Violin extends Instrument {

public void play() {

System.out.println("Violin's melody");

}

}

class Guitar extends Instrument {

public void play() {

System.out.println("Guitar music");

}

}

public class InstrumentTest {

public static void main(String[] args) {

// Instrument i1 = new Instrument(); // Error! Cannot instantiate Instrument

Violin i2 = new Violin();

Guitar i3 = new Guitar();

i2.play();

i3.play();

}

}



Dimitris C. Dracopoulos 10/17

class Violin extends Instrument {

public void play() {

System.out.println("Violin's melody");

}

}

class Guitar extends Instrument {

public void play() {

System.out.println("Guitar music");

}

}

public class InstrumentTest {

public static void main(String[] args) {

// Instrument i1 = new Instrument(); // Error! Cannot instantiate Instrument

Violin i2 = new Violin();

Guitar i3 = new Guitar();

i2.play();

i3.play();

}

}



Dimitris C. Dracopoulos 10/17

class Violin extends Instrument {

public void play() {

System.out.println("Violin's melody");

}

}

class Guitar extends Instrument {

public void play() {

System.out.println("Guitar music");

}

}

public class InstrumentTest {

public static void main(String[] args) {

// Instrument i1 = new Instrument(); // Error! Cannot instantiate Instrument

Violin i2 = new Violin();

Guitar i3 = new Guitar();

i2.play();

i3.play();

}

}



Dimitris C. Dracopoulos 10/17

class Violin extends Instrument {

public void play() {

System.out.println("Violin's melody");

}

}

class Guitar extends Instrument {

public void play() {

System.out.println("Guitar music");

}

}

public class InstrumentTest {

public static void main(String[] args) {

// Instrument i1 = new Instrument(); // Error! Cannot instantiate Instrument

Violin i2 = new Violin();

Guitar i3 = new Guitar();

i2.play();

i3.play();

}

}



Dimitris C. Dracopoulos 11/17

Polymorphism

A reference variable of type X (which can be a concrete base class,
an interface or an abstract class) can hold an object of any
subclass of X.

I Because of late binding, the specific class of the object held
by the reference variable will be determined at run time, and
calls to the appropriate methods will be produced.



Dimitris C. Dracopoulos 11/17

Polymorphism

A reference variable of type X (which can be a concrete base class,
an interface or an abstract class) can hold an object of any
subclass of X.

I Because of late binding, the specific class of the object held
by the reference variable will be determined at run time, and
calls to the appropriate methods will be produced.



Dimitris C. Dracopoulos 12/17

Example:

public class PolymorphismTester {

public static void main(String[] args) {

Person p = new Student("wmin", "tom");

p.info();

p = new PostGraduateStudent("stanford", "peter", "cs");

p.info();

System.out.println();

Instrument instr = new Guitar();

instr.play();

instr = new Violin();

instr.play();

System.out.println();

Game game = new BlackJack();

// game.getNumberOfBalls(); // Error! method is not in Game

game.printInstructions();

game = new ComputerGame("unix");

game.printInstructions();

}

}



Dimitris C. Dracopoulos 12/17

Example:

public class PolymorphismTester {

public static void main(String[] args) {

Person p = new Student("wmin", "tom");

p.info();

p = new PostGraduateStudent("stanford", "peter", "cs");

p.info();

System.out.println();

Instrument instr = new Guitar();

instr.play();

instr = new Violin();

instr.play();

System.out.println();

Game game = new BlackJack();

// game.getNumberOfBalls(); // Error! method is not in Game

game.printInstructions();

game = new ComputerGame("unix");

game.printInstructions();

}

}



Dimitris C. Dracopoulos 12/17

Example:

public class PolymorphismTester {

public static void main(String[] args) {

Person p = new Student("wmin", "tom");

p.info();

p = new PostGraduateStudent("stanford", "peter", "cs");

p.info();

System.out.println();

Instrument instr = new Guitar();

instr.play();

instr = new Violin();

instr.play();

System.out.println();

Game game = new BlackJack();

// game.getNumberOfBalls(); // Error! method is not in Game

game.printInstructions();

game = new ComputerGame("unix");

game.printInstructions();

}

}



Dimitris C. Dracopoulos 12/17

Example:

public class PolymorphismTester {

public static void main(String[] args) {

Person p = new Student("wmin", "tom");

p.info();

p = new PostGraduateStudent("stanford", "peter", "cs");

p.info();

System.out.println();

Instrument instr = new Guitar();

instr.play();

instr = new Violin();

instr.play();

System.out.println();

Game game = new BlackJack();

// game.getNumberOfBalls(); // Error! method is not in Game

game.printInstructions();

game = new ComputerGame("unix");

game.printInstructions();

}

}



Dimitris C. Dracopoulos 12/17

Example:

public class PolymorphismTester {

public static void main(String[] args) {

Person p = new Student("wmin", "tom");

p.info();

p = new PostGraduateStudent("stanford", "peter", "cs");

p.info();

System.out.println();

Instrument instr = new Guitar();

instr.play();

instr = new Violin();

instr.play();

System.out.println();

Game game = new BlackJack();

// game.getNumberOfBalls(); // Error! method is not in Game

game.printInstructions();

game = new ComputerGame("unix");

game.printInstructions();

}

}



Dimitris C. Dracopoulos 12/17

Example:

public class PolymorphismTester {

public static void main(String[] args) {

Person p = new Student("wmin", "tom");

p.info();

p = new PostGraduateStudent("stanford", "peter", "cs");

p.info();

System.out.println();

Instrument instr = new Guitar();

instr.play();

instr = new Violin();

instr.play();

System.out.println();

Game game = new BlackJack();

// game.getNumberOfBalls(); // Error! method is not in Game

game.printInstructions();

game = new ComputerGame("unix");

game.printInstructions();

}

}



Dimitris C. Dracopoulos 12/17

Example:

public class PolymorphismTester {

public static void main(String[] args) {

Person p = new Student("wmin", "tom");

p.info();

p = new PostGraduateStudent("stanford", "peter", "cs");

p.info();

System.out.println();

Instrument instr = new Guitar();

instr.play();

instr = new Violin();

instr.play();

System.out.println();

Game game = new BlackJack();

// game.getNumberOfBalls(); // Error! method is not in Game

game.printInstructions();

game = new ComputerGame("unix");

game.printInstructions();

}

}



Dimitris C. Dracopoulos 12/17

Example:

public class PolymorphismTester {

public static void main(String[] args) {

Person p = new Student("wmin", "tom");

p.info();

p = new PostGraduateStudent("stanford", "peter", "cs");

p.info();

System.out.println();

Instrument instr = new Guitar();

instr.play();

instr = new Violin();

instr.play();

System.out.println();

Game game = new BlackJack();

// game.getNumberOfBalls(); // Error! method is not in Game

game.printInstructions();

game = new ComputerGame("unix");

game.printInstructions();

}

}



Dimitris C. Dracopoulos 12/17

Example:

public class PolymorphismTester {

public static void main(String[] args) {

Person p = new Student("wmin", "tom");

p.info();

p = new PostGraduateStudent("stanford", "peter", "cs");

p.info();

System.out.println();

Instrument instr = new Guitar();

instr.play();

instr = new Violin();

instr.play();

System.out.println();

Game game = new BlackJack();

// game.getNumberOfBalls(); // Error! method is not in Game

game.printInstructions();

game = new ComputerGame("unix");

game.printInstructions();

}

}



Dimitris C. Dracopoulos 12/17

Example:

public class PolymorphismTester {

public static void main(String[] args) {

Person p = new Student("wmin", "tom");

p.info();

p = new PostGraduateStudent("stanford", "peter", "cs");

p.info();

System.out.println();

Instrument instr = new Guitar();

instr.play();

instr = new Violin();

instr.play();

System.out.println();

Game game = new BlackJack();

// game.getNumberOfBalls(); // Error! method is not in Game

game.printInstructions();

game = new ComputerGame("unix");

game.printInstructions();

}

}



Dimitris C. Dracopoulos 12/17

Example:

public class PolymorphismTester {

public static void main(String[] args) {

Person p = new Student("wmin", "tom");

p.info();

p = new PostGraduateStudent("stanford", "peter", "cs");

p.info();

System.out.println();

Instrument instr = new Guitar();

instr.play();

instr = new Violin();

instr.play();

System.out.println();

Game game = new BlackJack();

// game.getNumberOfBalls(); // Error! method is not in Game

game.printInstructions();

game = new ComputerGame("unix");

game.printInstructions();

}

}



Dimitris C. Dracopoulos 12/17

Example:

public class PolymorphismTester {

public static void main(String[] args) {

Person p = new Student("wmin", "tom");

p.info();

p = new PostGraduateStudent("stanford", "peter", "cs");

p.info();

System.out.println();

Instrument instr = new Guitar();

instr.play();

instr = new Violin();

instr.play();

System.out.println();

Game game = new BlackJack();

// game.getNumberOfBalls(); // Error! method is not in Game

game.printInstructions();

game = new ComputerGame("unix");

game.printInstructions();

}

}



Dimitris C. Dracopoulos 13/17

The output of the above program is:

name: tom

school: wmin

name: peter

school: stanford

firstDegree: cs

Guitar music

Violin's melody

BlackJack printInstructions() called

ComputerGame printInstructions() called



Dimitris C. Dracopoulos 14/17

Access Specifiers

The details (methods, fields) of the implementation of a class can
be hidden from other classes.
The members of a class (i.e. data and methods) can be:

I Public: Everybody can access them.

I Private: Only the class itself can access them.

I Protected: Only the class itself, its subclasses and the classes
in the same package can access them.

I In Java: No access specifier means the default access is
package. Classes in the same package can access these
members.

The capability of classes to hide information from other classes is
one of the fundamental characteristics of object oriented
programming, called encapsulation.



Dimitris C. Dracopoulos 14/17

Access Specifiers

The details (methods, fields) of the implementation of a class can
be hidden from other classes.
The members of a class (i.e. data and methods) can be:

I Public: Everybody can access them.

I Private: Only the class itself can access them.

I Protected: Only the class itself, its subclasses and the classes
in the same package can access them.

I In Java: No access specifier means the default access is
package. Classes in the same package can access these
members.

The capability of classes to hide information from other classes is
one of the fundamental characteristics of object oriented
programming, called encapsulation.



Dimitris C. Dracopoulos 14/17

Access Specifiers

The details (methods, fields) of the implementation of a class can
be hidden from other classes.
The members of a class (i.e. data and methods) can be:

I Public: Everybody can access them.

I Private: Only the class itself can access them.

I Protected: Only the class itself, its subclasses and the classes
in the same package can access them.

I In Java: No access specifier means the default access is
package. Classes in the same package can access these
members.

The capability of classes to hide information from other classes is
one of the fundamental characteristics of object oriented
programming, called encapsulation.



Dimitris C. Dracopoulos 14/17

Access Specifiers

The details (methods, fields) of the implementation of a class can
be hidden from other classes.
The members of a class (i.e. data and methods) can be:

I Public: Everybody can access them.

I Private: Only the class itself can access them.

I Protected: Only the class itself, its subclasses and the classes
in the same package can access them.

I In Java: No access specifier means the default access is
package. Classes in the same package can access these
members.

The capability of classes to hide information from other classes is
one of the fundamental characteristics of object oriented
programming, called encapsulation.



Dimitris C. Dracopoulos 14/17

Access Specifiers

The details (methods, fields) of the implementation of a class can
be hidden from other classes.
The members of a class (i.e. data and methods) can be:

I Public: Everybody can access them.

I Private: Only the class itself can access them.

I Protected: Only the class itself, its subclasses and the classes
in the same package can access them.

I In Java: No access specifier means the default access is
package. Classes in the same package can access these
members.

The capability of classes to hide information from other classes is
one of the fundamental characteristics of object oriented
programming, called encapsulation.



Dimitris C. Dracopoulos 14/17

Access Specifiers

The details (methods, fields) of the implementation of a class can
be hidden from other classes.
The members of a class (i.e. data and methods) can be:

I Public: Everybody can access them.

I Private: Only the class itself can access them.

I Protected: Only the class itself, its subclasses and the classes
in the same package can access them.

I In Java: No access specifier means the default access is
package. Classes in the same package can access these
members.

The capability of classes to hide information from other classes is
one of the fundamental characteristics of object oriented
programming, called encapsulation.



Dimitris C. Dracopoulos 14/17

Access Specifiers

The details (methods, fields) of the implementation of a class can
be hidden from other classes.
The members of a class (i.e. data and methods) can be:

I Public: Everybody can access them.

I Private: Only the class itself can access them.

I Protected: Only the class itself, its subclasses and the classes
in the same package can access them.

I In Java: No access specifier means the default access is
package. Classes in the same package can access these
members.

The capability of classes to hide information from other classes is
one of the fundamental characteristics of object oriented
programming, called encapsulation.



Dimitris C. Dracopoulos 14/17

Access Specifiers

The details (methods, fields) of the implementation of a class can
be hidden from other classes.
The members of a class (i.e. data and methods) can be:

I Public: Everybody can access them.

I Private: Only the class itself can access them.

I Protected: Only the class itself, its subclasses and the classes
in the same package can access them.

I In Java: No access specifier means the default access is
package. Classes in the same package can access these
members.

The capability of classes to hide information from other classes is
one of the fundamental characteristics of object oriented
programming, called encapsulation.



Dimitris C. Dracopoulos 14/17

Access Specifiers

The details (methods, fields) of the implementation of a class can
be hidden from other classes.
The members of a class (i.e. data and methods) can be:

I Public: Everybody can access them.

I Private: Only the class itself can access them.

I Protected: Only the class itself, its subclasses and the classes
in the same package can access them.

I In Java: No access specifier means the default access is
package. Classes in the same package can access these
members.

The capability of classes to hide information from other classes is
one of the fundamental characteristics of object oriented
programming, called encapsulation.



Dimitris C. Dracopoulos 15/17

Example:

package p1;

public class Book {

public int numberOfPages;

protected boolean paperback;

private String colour;

String subject;

}

package p1;

class TextBook extends Book {

void modifyData() {

numberOfPages = 100; // OK

paperback = true; // OK

colour = "blue"; //Error! colour is private in superclass

subject = "computer science"; // OK

}

}



Dimitris C. Dracopoulos 15/17

Example:

package p1;

public class Book {

public int numberOfPages;

protected boolean paperback;

private String colour;

String subject;

}

package p1;

class TextBook extends Book {

void modifyData() {

numberOfPages = 100; // OK

paperback = true; // OK

colour = "blue"; //Error! colour is private in superclass

subject = "computer science"; // OK

}

}



Dimitris C. Dracopoulos 15/17

Example:

package p1;

public class Book {

public int numberOfPages;

protected boolean paperback;

private String colour;

String subject;

}

package p1;

class TextBook extends Book {

void modifyData() {

numberOfPages = 100; // OK

paperback = true; // OK

colour = "blue"; //Error! colour is private in superclass

subject = "computer science"; // OK

}

}



Dimitris C. Dracopoulos 15/17

Example:

package p1;

public class Book {

public int numberOfPages;

protected boolean paperback;

private String colour;

String subject;

}

package p1;

class TextBook extends Book {

void modifyData() {

numberOfPages = 100; // OK

paperback = true; // OK

colour = "blue"; //Error! colour is private in superclass

subject = "computer science"; // OK

}

}



Dimitris C. Dracopoulos 15/17

Example:

package p1;

public class Book {

public int numberOfPages;

protected boolean paperback;

private String colour;

String subject;

}

package p1;

class TextBook extends Book {

void modifyData() {

numberOfPages = 100; // OK

paperback = true; // OK

colour = "blue"; //Error! colour is private in superclass

subject = "computer science"; // OK

}

}



Dimitris C. Dracopoulos 16/17

/* class AccessSpecifierExample is in the same package p1

with class Book */

public class AccessSpecifiersExample {

public static void main(String[] args) {

Book b = new Book();

b.numberOfPages = 200; // OK

b.paperback = false; // OK

b.colour = "yellow"; // Error! colour is private in Book

b.subject = "engineering"; // OK

}

}



Dimitris C. Dracopoulos 16/17

/* class AccessSpecifierExample is in the same package p1

with class Book */

public class AccessSpecifiersExample {

public static void main(String[] args) {

Book b = new Book();

b.numberOfPages = 200; // OK

b.paperback = false; // OK

b.colour = "yellow"; // Error! colour is private in Book

b.subject = "engineering"; // OK

}

}



Dimitris C. Dracopoulos 16/17

/* class AccessSpecifierExample is in the same package p1

with class Book */

public class AccessSpecifiersExample {

public static void main(String[] args) {

Book b = new Book();

b.numberOfPages = 200; // OK

b.paperback = false; // OK

b.colour = "yellow"; // Error! colour is private in Book

b.subject = "engineering"; // OK

}

}



Dimitris C. Dracopoulos 16/17

/* class AccessSpecifierExample is in the same package p1

with class Book */

public class AccessSpecifiersExample {

public static void main(String[] args) {

Book b = new Book();

b.numberOfPages = 200; // OK

b.paperback = false; // OK

b.colour = "yellow"; // Error! colour is private in Book

b.subject = "engineering"; // OK

}

}



Dimitris C. Dracopoulos 16/17

/* class AccessSpecifierExample is in the same package p1

with class Book */

public class AccessSpecifiersExample {

public static void main(String[] args) {

Book b = new Book();

b.numberOfPages = 200; // OK

b.paperback = false; // OK

b.colour = "yellow"; // Error! colour is private in Book

b.subject = "engineering"; // OK

}

}



Dimitris C. Dracopoulos 16/17

/* class AccessSpecifierExample is in the same package p1

with class Book */

public class AccessSpecifiersExample {

public static void main(String[] args) {

Book b = new Book();

b.numberOfPages = 200; // OK

b.paperback = false; // OK

b.colour = "yellow"; // Error! colour is private in Book

b.subject = "engineering"; // OK

}

}



Dimitris C. Dracopoulos 16/17

/* class AccessSpecifierExample is in the same package p1

with class Book */

public class AccessSpecifiersExample {

public static void main(String[] args) {

Book b = new Book();

b.numberOfPages = 200; // OK

b.paperback = false; // OK

b.colour = "yellow"; // Error! colour is private in Book

b.subject = "engineering"; // OK

}

}



Dimitris C. Dracopoulos 16/17

/* class AccessSpecifierExample is in the same package p1

with class Book */

public class AccessSpecifiersExample {

public static void main(String[] args) {

Book b = new Book();

b.numberOfPages = 200; // OK

b.paperback = false; // OK

b.colour = "yellow"; // Error! colour is private in Book

b.subject = "engineering"; // OK

}

}



Dimitris C. Dracopoulos 16/17

/* class AccessSpecifierExample is in the same package p1

with class Book */

public class AccessSpecifiersExample {

public static void main(String[] args) {

Book b = new Book();

b.numberOfPages = 200; // OK

b.paperback = false; // OK

b.colour = "yellow"; // Error! colour is private in Book

b.subject = "engineering"; // OK

}

}



Dimitris C. Dracopoulos 17/17

A bit of caution on “Protected” access!

package p2;

import p1.Book; // import class A from package p1

public class D extends Book {

public static void main(String[] args) {

D d1 = new D();

d1.paperback = true; // OK

Book b2 = new Book();

b2.paperback = true; /* No! Error! paperback has

protected access in p1.Book */

}

}



Dimitris C. Dracopoulos 17/17

A bit of caution on “Protected” access!

package p2;

import p1.Book; // import class A from package p1

public class D extends Book {

public static void main(String[] args) {

D d1 = new D();

d1.paperback = true; // OK

Book b2 = new Book();

b2.paperback = true; /* No! Error! paperback has

protected access in p1.Book */

}

}



Dimitris C. Dracopoulos 17/17

A bit of caution on “Protected” access!

package p2;

import p1.Book; // import class A from package p1

public class D extends Book {

public static void main(String[] args) {

D d1 = new D();

d1.paperback = true; // OK

Book b2 = new Book();

b2.paperback = true; /* No! Error! paperback has

protected access in p1.Book */

}

}



Dimitris C. Dracopoulos 17/17

A bit of caution on “Protected” access!

package p2;

import p1.Book; // import class A from package p1

public class D extends Book {

public static void main(String[] args) {

D d1 = new D();

d1.paperback = true; // OK

Book b2 = new Book();

b2.paperback = true; /* No! Error! paperback has

protected access in p1.Book */

}

}



Dimitris C. Dracopoulos 17/17

A bit of caution on “Protected” access!

package p2;

import p1.Book; // import class A from package p1

public class D extends Book {

public static void main(String[] args) {

D d1 = new D();

d1.paperback = true; // OK

Book b2 = new Book();

b2.paperback = true; /* No! Error! paperback has

protected access in p1.Book */

}

}


